{"title":"Sub-terahertz metamaterial stickers for non-invasive fruit ripeness sensing","authors":"Subhajit Karmakar, Atsutse Kludze, Ranveer Chandra, Yasaman Ghasempour","doi":"10.1038/s43016-024-01083-x","DOIUrl":null,"url":null,"abstract":"<p>Fruits and vegetables account for around a third of all food loss and waste. Post-harvest, retail and consumer losses and waste could be reduced with better ripeness assessment methods. Here we develop a sub-terahertz metamaterial sticker (called Meta-Sticker) that can be attached to a fruit to provide insights into the edible mesocarp’s ripeness without cutting into the produce. The fruit acts as a complex multilayer substrate to Meta-Sticker and, when excited by sub-terahertz signals, generates two distinct resonances: localized dipole resonance that correlates with the exocarp’s refractive index; and propagating plasmon resonance that penetrates into the mesocarp and resembles the rare phenomenon of ‘extraordinary transmission’. The Meta-Sticker accurately predicted the ripeness of different fruits with a cumulative normalized root mean square error of 0.54% of the produce tested. This study offers a non-invasive, low-cost and biodegradable solution for accurate ripeness assessment with applications in distribution optimization and food waste reduction.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-024-01083-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fruits and vegetables account for around a third of all food loss and waste. Post-harvest, retail and consumer losses and waste could be reduced with better ripeness assessment methods. Here we develop a sub-terahertz metamaterial sticker (called Meta-Sticker) that can be attached to a fruit to provide insights into the edible mesocarp’s ripeness without cutting into the produce. The fruit acts as a complex multilayer substrate to Meta-Sticker and, when excited by sub-terahertz signals, generates two distinct resonances: localized dipole resonance that correlates with the exocarp’s refractive index; and propagating plasmon resonance that penetrates into the mesocarp and resembles the rare phenomenon of ‘extraordinary transmission’. The Meta-Sticker accurately predicted the ripeness of different fruits with a cumulative normalized root mean square error of 0.54% of the produce tested. This study offers a non-invasive, low-cost and biodegradable solution for accurate ripeness assessment with applications in distribution optimization and food waste reduction.