The brain’s action-mode network

IF 34.7 1区 医学 Q1 Neuroscience
Nico U. F. Dosenbach, Marcus E. Raichle, Evan M. Gordon
{"title":"The brain’s action-mode network","authors":"Nico U. F. Dosenbach, Marcus E. Raichle, Evan M. Gordon","doi":"10.1038/s41583-024-00895-x","DOIUrl":null,"url":null,"abstract":"<p>The brain is always intrinsically active, using energy at high rates while cycling through global functional modes. Awake brain modes are tied to corresponding behavioural states. During goal-directed behaviour, the brain enters an action-mode of function. In the action-mode, arousal is heightened, attention is focused externally and action plans are created, converted to goal-directed movements and continuously updated on the basis of relevant feedback, such as pain. Here, we synthesize classical and recent human and animal evidence that the action-mode of the brain is created and maintained by an action-mode network (AMN), which we had previously identified and named the cingulo-opercular network on the basis of its anatomy. We discuss how rather than continuing to name this network anatomically, annotating it functionally as controlling the action-mode of the brain increases its distinctiveness from spatially adjacent networks and accounts for the large variety of the associated functions of an AMN, such as increasing arousal, processing of instructional cues, task general initiation transients, sustained goal maintenance, action planning, sympathetic drive for controlling physiology and internal organs (connectivity to adrenal medulla), and action-relevant bottom–up signals such as physical pain, errors and viscerosensation. In the functional mode continuum of the awake brain, the AMN-generated action-mode sits opposite the default-mode for self-referential, emotional and memory processing, with the default-mode network and AMN counterbalancing each other as yin and yang.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"54 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-024-00895-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The brain is always intrinsically active, using energy at high rates while cycling through global functional modes. Awake brain modes are tied to corresponding behavioural states. During goal-directed behaviour, the brain enters an action-mode of function. In the action-mode, arousal is heightened, attention is focused externally and action plans are created, converted to goal-directed movements and continuously updated on the basis of relevant feedback, such as pain. Here, we synthesize classical and recent human and animal evidence that the action-mode of the brain is created and maintained by an action-mode network (AMN), which we had previously identified and named the cingulo-opercular network on the basis of its anatomy. We discuss how rather than continuing to name this network anatomically, annotating it functionally as controlling the action-mode of the brain increases its distinctiveness from spatially adjacent networks and accounts for the large variety of the associated functions of an AMN, such as increasing arousal, processing of instructional cues, task general initiation transients, sustained goal maintenance, action planning, sympathetic drive for controlling physiology and internal organs (connectivity to adrenal medulla), and action-relevant bottom–up signals such as physical pain, errors and viscerosensation. In the functional mode continuum of the awake brain, the AMN-generated action-mode sits opposite the default-mode for self-referential, emotional and memory processing, with the default-mode network and AMN counterbalancing each other as yin and yang.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Neuroscience
Nature Reviews Neuroscience 医学-神经科学
CiteScore
35.00
自引率
0.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信