Yuan Liu, Shuaifei Huang, Weiguo Xu, Zhuang Wang, Dong Ming
{"title":"An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.","authors":"Yuan Liu, Shuaifei Huang, Weiguo Xu, Zhuang Wang, Dong Ming","doi":"10.1038/s41539-024-00294-y","DOIUrl":null,"url":null,"abstract":"<p><p>Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI. After training, the BCI-SRF group showed 350% times compared to the Finger group in the improvement of sequence opposition accuracy before and after training, and accompanied by significant functional connectivity increases in the sensorimotor region and prefrontal cortex, as well as in the intra- and inter-hemisphere of the sensorimotor network. Moreover, Granger Causality Analysis identified causal effect main transfer within the sensorimotor cortex-cerebellar-thalamus loop and frontal-parietal loop. The findings suggest that BCI-SRF training enhances motor sequence learning ability by influencing the functional reorganization of sensorimotor network.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"9 1","pages":"80"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-024-00294-y","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI. After training, the BCI-SRF group showed 350% times compared to the Finger group in the improvement of sequence opposition accuracy before and after training, and accompanied by significant functional connectivity increases in the sensorimotor region and prefrontal cortex, as well as in the intra- and inter-hemisphere of the sensorimotor network. Moreover, Granger Causality Analysis identified causal effect main transfer within the sensorimotor cortex-cerebellar-thalamus loop and frontal-parietal loop. The findings suggest that BCI-SRF training enhances motor sequence learning ability by influencing the functional reorganization of sensorimotor network.