Olawale S Adeyinka, Michael D Barrera, Damilohun S Metibemu, Niloufar Boghdeh, Carol A Anderson, Haseebullah Baha, Olamide Crown, John Adeolu Falode, Janard L Bleach, Amanda R Bliss, Tamia P Hampton, Jane-Frances Chinenye Ojobor, Farhang Alem, Aarthi Narayanan, Ifedayo Victor Ogungbe
{"title":"nsP2 Protease Inhibitor Blocks the Replication of New World Alphaviruses and Offer Protection in Mice.","authors":"Olawale S Adeyinka, Michael D Barrera, Damilohun S Metibemu, Niloufar Boghdeh, Carol A Anderson, Haseebullah Baha, Olamide Crown, John Adeolu Falode, Janard L Bleach, Amanda R Bliss, Tamia P Hampton, Jane-Frances Chinenye Ojobor, Farhang Alem, Aarthi Narayanan, Ifedayo Victor Ogungbe","doi":"10.1021/acsinfecdis.4c00701","DOIUrl":null,"url":null,"abstract":"<p><p>New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses. The alphavirus nonstructural protein 2 (nsP2) functions as a protease, which is critical for the establishment of a productive viral infection by enabling accurate processing of the nsP123 polyprotein. Owing to the essential role played by nsP2 in the alphavirus infectious process, it is also a valuable therapeutic target. In this article, we report the synthesis and evaluation of novel small molecule inhibitors that target the alphavirus nsP2 protease via a covalent mode of action. The two lead compounds demonstrated robust inhibition of viral replication <i>in vitro</i>. These inhibitors interfered with the processing of the nsP123 polyprotein as determined using VEEV TC-83 as a model pathogen and are active against EEEV and WEEV. The compounds were found to be nontoxic in two different mouse strains and demonstrated antiviral activity in a VEEV TC-83 lethal challenge mouse model. Cumulatively, the outcomes of this study provide a compelling rationale for the preclinical development of nsP2 protease inhibitors as direct-acting antiviral therapeutics against alphaviruses.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00701","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses. The alphavirus nonstructural protein 2 (nsP2) functions as a protease, which is critical for the establishment of a productive viral infection by enabling accurate processing of the nsP123 polyprotein. Owing to the essential role played by nsP2 in the alphavirus infectious process, it is also a valuable therapeutic target. In this article, we report the synthesis and evaluation of novel small molecule inhibitors that target the alphavirus nsP2 protease via a covalent mode of action. The two lead compounds demonstrated robust inhibition of viral replication in vitro. These inhibitors interfered with the processing of the nsP123 polyprotein as determined using VEEV TC-83 as a model pathogen and are active against EEEV and WEEV. The compounds were found to be nontoxic in two different mouse strains and demonstrated antiviral activity in a VEEV TC-83 lethal challenge mouse model. Cumulatively, the outcomes of this study provide a compelling rationale for the preclinical development of nsP2 protease inhibitors as direct-acting antiviral therapeutics against alphaviruses.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.