Eduard T Klapwijk, Joran Jongerling, Herbert Hoijtink, Eveline A Crone
{"title":"Sample size estimation for task-related functional MRI studies using Bayesian updating.","authors":"Eduard T Klapwijk, Joran Jongerling, Herbert Hoijtink, Eveline A Crone","doi":"10.1016/j.dcn.2024.101489","DOIUrl":null,"url":null,"abstract":"<p><p>Task-related functional MRI (fMRI) studies need to be properly powered with an adequate sample size to reliably detect effects of interest. But for most fMRI studies, it is not straightforward to determine a proper sample size using power calculations based on published effect sizes. Here, we present an alternative approach of sample size estimation with empirical Bayesian updating. First, this method provides an estimate of the required sample size using existing data from a similar task and similar region of interest. Using this estimate researchers can plan their research project, and report empirically determined sample size estimations in their research proposal or pre-registration. Second, researchers can expand the sample size estimations with new data. We illustrate this approach using four existing fMRI data sets where Cohen's d is the effect size of interest for the hemodynamic response in the task condition of interest versus a control condition, and where a Pearson correlation between task effect and age is the covariate of interest. We show that sample sizes to reliably detect effects differ between various tasks and regions of interest. We provide an R package to allow researchers to use Bayesian updating with other task-related fMRI studies.</p>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"71 ","pages":"101489"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dcn.2024.101489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Task-related functional MRI (fMRI) studies need to be properly powered with an adequate sample size to reliably detect effects of interest. But for most fMRI studies, it is not straightforward to determine a proper sample size using power calculations based on published effect sizes. Here, we present an alternative approach of sample size estimation with empirical Bayesian updating. First, this method provides an estimate of the required sample size using existing data from a similar task and similar region of interest. Using this estimate researchers can plan their research project, and report empirically determined sample size estimations in their research proposal or pre-registration. Second, researchers can expand the sample size estimations with new data. We illustrate this approach using four existing fMRI data sets where Cohen's d is the effect size of interest for the hemodynamic response in the task condition of interest versus a control condition, and where a Pearson correlation between task effect and age is the covariate of interest. We show that sample sizes to reliably detect effects differ between various tasks and regions of interest. We provide an R package to allow researchers to use Bayesian updating with other task-related fMRI studies.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.