{"title":"Cadmium biphasically impacts the adaptive immune system via regulating mitochondrial activation of hematopoietic stem cells in mice.","authors":"Yifan Zhao, Chuanxuan Wang, Jun Du, Wei Wang, Jiaojiao Wu, Ting Liu, Peng Xue, Yingzi Ju, Xinyu Hong, Jianheng Zheng, Weidong Qu, Yubin Zhang","doi":"10.1016/j.taap.2024.117216","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) is a highly toxic metal in human body, and therefore understanding the immunotoxicity of Cd is significant for public health. The aim of this study was to investigate the role of hematopoietic stem cells (HSC) in regulating the immunotoxicity of Cd. After exposure to 10 ppm Cd via drinking water for up to 9 months, C57BL/6 mice had a suppressed adaptive immune system at day 135 but had an enhanced adaptive immune system at day 270 during Cd exposure. The biphasic impacts of Cd on the adaptive immune system were correlated to the mitochondrial (MT) activation of HSC. Mechanistically, a direct action of Cd activated the non-canonical Wnt signaling to increase MT activation in HSC in the bone marrow (BM) at day 90, thus resulting in an impaired adaptive immune system in mice at day 135 during Cd exposure; conversely, Cd reduced the production of thrombopoietin (TPO) by osteoblasts in the BM to suppress MT activation in HSC at day 180, which in turn caused an enhanced adaptive immune system in mice at day 270 during Cd exposure. Thus, Cd biphasically impacts the adaptive immune system via regulating MT activation of HSC, providing a novel angle for understanding the immunotoxicology of metals.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"117216"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is a highly toxic metal in human body, and therefore understanding the immunotoxicity of Cd is significant for public health. The aim of this study was to investigate the role of hematopoietic stem cells (HSC) in regulating the immunotoxicity of Cd. After exposure to 10 ppm Cd via drinking water for up to 9 months, C57BL/6 mice had a suppressed adaptive immune system at day 135 but had an enhanced adaptive immune system at day 270 during Cd exposure. The biphasic impacts of Cd on the adaptive immune system were correlated to the mitochondrial (MT) activation of HSC. Mechanistically, a direct action of Cd activated the non-canonical Wnt signaling to increase MT activation in HSC in the bone marrow (BM) at day 90, thus resulting in an impaired adaptive immune system in mice at day 135 during Cd exposure; conversely, Cd reduced the production of thrombopoietin (TPO) by osteoblasts in the BM to suppress MT activation in HSC at day 180, which in turn caused an enhanced adaptive immune system in mice at day 270 during Cd exposure. Thus, Cd biphasically impacts the adaptive immune system via regulating MT activation of HSC, providing a novel angle for understanding the immunotoxicology of metals.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.