Development of Machine-learning Model to Predict Anticoagulant Use and Type in Geriatric Traumatic Brain Injury Using Coagulation Parameters.

IF 2.4 4区 医学 Q2 CLINICAL NEUROLOGY
Neurologia medico-chirurgica Pub Date : 2025-02-15 Epub Date: 2024-12-25 DOI:10.2176/jns-nmc.2024-0066
Gaku Fujiwara, Yohei Okada, Eiichi Suehiro, Hiroshi Yatsushige, Shin Hirota, Shu Hasegawa, Hiroshi Karibe, Akihiro Miyata, Kenya Kawakita, Kohei Haji, Hideo Aihara, Shoji Yokobori, Motoki Inaji, Takeshi Maeda, Takahiro Onuki, Kotaro Oshio, Nobukazu Komoribayashi, Michiyasu Suzuki, Naoto Shiomi
{"title":"Development of Machine-learning Model to Predict Anticoagulant Use and Type in Geriatric Traumatic Brain Injury Using Coagulation Parameters.","authors":"Gaku Fujiwara, Yohei Okada, Eiichi Suehiro, Hiroshi Yatsushige, Shin Hirota, Shu Hasegawa, Hiroshi Karibe, Akihiro Miyata, Kenya Kawakita, Kohei Haji, Hideo Aihara, Shoji Yokobori, Motoki Inaji, Takeshi Maeda, Takahiro Onuki, Kotaro Oshio, Nobukazu Komoribayashi, Michiyasu Suzuki, Naoto Shiomi","doi":"10.2176/jns-nmc.2024-0066","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the patterns of anticoagulation therapy and coagulation parameters and to develop a prediction model to predict the type of anticoagulation therapy in geriatric patients with traumatic brain injury. A retrospective analysis was performed using the nationwide neurotrauma database of Japan. Elderly patients (≥65 years) with traumatic brain injury. Patients were divided into 3 groups based on their daily anticoagulant medication (none, direct oral anticoagulant [DOAC], and vitamin K antagonist [VKA]), and coagulation parameters were compared in each group. We then developed a machine-learning model to predict the anticoagulant using coagulation parameters and visualized the pattern using a heat map. A total of 495 patients were enrolled and divided into 3 groups: none (n = 439), DOACs (n = 37), and VKA (n = 19). Comparing none to DOAC and DOAC to VKA for prothrombin time-international normalized ratio (PT-INR), the mean difference and 95% confidence intervals (CIs) were 0.38 (95% CI: 0.59-0.17) and 1.56 (95% CI: 1.21-1.90), and for activated partial thromboplastin time (APTT), the mean difference between none to DOAC and DOAC to VKA was 3.46 (95% CI: 0.98-5.94) and 95% CI was 7.39 (95% CI: 3.29-11.48). A prediction model for the type of anticoagulant used by PT-INR and APTT was developed using machine-learning methods, and a heat map visually revealed their relationship with acceptable predictive ability. This study revealed the characteristic patterns of coagulation parameters in anticoagulants and a pilot model to predict anticoagulant use.</p>","PeriodicalId":19225,"journal":{"name":"Neurologia medico-chirurgica","volume":" ","pages":"61-70"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurologia medico-chirurgica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2176/jns-nmc.2024-0066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the patterns of anticoagulation therapy and coagulation parameters and to develop a prediction model to predict the type of anticoagulation therapy in geriatric patients with traumatic brain injury. A retrospective analysis was performed using the nationwide neurotrauma database of Japan. Elderly patients (≥65 years) with traumatic brain injury. Patients were divided into 3 groups based on their daily anticoagulant medication (none, direct oral anticoagulant [DOAC], and vitamin K antagonist [VKA]), and coagulation parameters were compared in each group. We then developed a machine-learning model to predict the anticoagulant using coagulation parameters and visualized the pattern using a heat map. A total of 495 patients were enrolled and divided into 3 groups: none (n = 439), DOACs (n = 37), and VKA (n = 19). Comparing none to DOAC and DOAC to VKA for prothrombin time-international normalized ratio (PT-INR), the mean difference and 95% confidence intervals (CIs) were 0.38 (95% CI: 0.59-0.17) and 1.56 (95% CI: 1.21-1.90), and for activated partial thromboplastin time (APTT), the mean difference between none to DOAC and DOAC to VKA was 3.46 (95% CI: 0.98-5.94) and 95% CI was 7.39 (95% CI: 3.29-11.48). A prediction model for the type of anticoagulant used by PT-INR and APTT was developed using machine-learning methods, and a heat map visually revealed their relationship with acceptable predictive ability. This study revealed the characteristic patterns of coagulation parameters in anticoagulants and a pilot model to predict anticoagulant use.

利用凝血参数预测老年外伤性脑损伤抗凝剂使用和类型的机器学习模型的建立。
本研究旨在探讨老年创伤性脑损伤患者的抗凝治疗模式和凝血参数,并建立预测模型来预测抗凝治疗类型。使用日本全国神经外伤数据库进行回顾性分析。老年(≥65岁)外伤性脑损伤患者。根据患者每日抗凝用药情况(无、直接口服抗凝剂[DOAC]、维生素K拮抗剂[VKA])分为3组,比较各组凝血指标。然后,我们开发了一个机器学习模型,使用凝血参数预测抗凝剂,并使用热图将模式可视化。共纳入495例患者,分为3组:无组(n = 439)、DOACs组(n = 37)和VKA组(n = 19)。在凝血酶原时间-国际标准化比值(PT-INR)方面,无与DOAC和DOAC与VKA比较,平均差值和95%可信区间(CI)分别为0.38 (95% CI: 0.59-0.17)和1.56 (95% CI: 1.21-1.90);在活化部分凝血活素时间(APTT)方面,无与DOAC和DOAC与VKA的平均差值分别为3.46 (95% CI: 0.98-5.94)和7.39 (95% CI: 3.29-11.48)。使用机器学习方法建立了PT-INR和APTT使用抗凝血剂类型的预测模型,并通过热图直观地揭示了它们与可接受预测能力的关系。本研究揭示了抗凝血参数的特征模式,并建立了预测抗凝血使用的试点模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurologia medico-chirurgica
Neurologia medico-chirurgica 医学-临床神经学
CiteScore
3.70
自引率
10.50%
发文量
63
审稿时长
3-8 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信