Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
L M L Kok, K Helwegen, N F Coveña, V M Heine
{"title":"Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro.","authors":"L M L Kok, K Helwegen, N F Coveña, V M Heine","doi":"10.1016/j.jneumeth.2024.110354","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.</p><p><strong>New method: </strong>In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.</p><p><strong>Results: </strong>hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.</p><p><strong>Conclusion: </strong>Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110354"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110354","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.

New method: In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.

Results: hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.

Conclusion: Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信