Slx5/Slx8 SUMO-targeted ubiquitin ligase deficiency shortens lifespan due to increased mutation accumulation in yeast.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Pınar B Thomas, Nur Kaluç, Irmak N Çavlı, Bilge G Tuna
{"title":"Slx5/Slx8 SUMO-targeted ubiquitin ligase deficiency shortens lifespan due to increased mutation accumulation in yeast.","authors":"Pınar B Thomas, Nur Kaluç, Irmak N Çavlı, Bilge G Tuna","doi":"10.1093/femsle/fnae109","DOIUrl":null,"url":null,"abstract":"<p><p>Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress. Small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) play a critical role in mediating an adaptive response to various stresses. In this study, we investigated the effect of a STUbL, Slx5/Slx8, on CLS in budding yeast. We showed that both SLX5 and SLX8 deletions accelerate chronological aging, resulting in a decreased maximum and mean lifespan. slx5Δ cells were capable of entering or maintaining a quiescent state during aging. On the other hand, aging slx5Δ and slx8Δ cells had both increased spontaneous mutation accumulation. Our data together indicate that Slx5/Slx8 STUbL is required for normal rate of aging by preventing increased spontaneous mutation accumulation during aging.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae109","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress. Small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) play a critical role in mediating an adaptive response to various stresses. In this study, we investigated the effect of a STUbL, Slx5/Slx8, on CLS in budding yeast. We showed that both SLX5 and SLX8 deletions accelerate chronological aging, resulting in a decreased maximum and mean lifespan. slx5Δ cells were capable of entering or maintaining a quiescent state during aging. On the other hand, aging slx5Δ and slx8Δ cells had both increased spontaneous mutation accumulation. Our data together indicate that Slx5/Slx8 STUbL is required for normal rate of aging by preventing increased spontaneous mutation accumulation during aging.

Slx5/Slx8 sumo靶向泛素连接酶缺乏症由于酵母突变积累增加而缩短寿命。
酿酒酵母(Saccharomyces cerevisiae)的时间顺序寿命(CLS)被定义为饱和状态下未分裂细胞保持活力的时间,已被用作研究哺乳动物细胞有丝分裂后衰老的模型。CLS与静止状态的进入和维持密切相关。引导静止状态的许多重排增强了细胞承受多种压力的能力。sumo靶向泛素连接酶(STUbLs)在介导对各种应激的适应性反应中起关键作用。在这项研究中,我们研究了一个STUbL Slx5/Slx8对出芽酵母CLS的影响。我们发现SLX5和SLX8缺失都加速了时间顺序衰老,导致最大寿命和平均寿命下降。Slx5Δ细胞能够在衰老过程中进入或维持静止状态。另一方面,衰老slx5Δ和slx8Δ细胞都增加了自发突变的积累。我们的数据共同表明,Slx5/Slx8 STUBL通过防止衰老过程中增加的自发突变积累来维持正常的衰老速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信