Exploring Wide Working Coefficient of Trigatron Gas Switches: A Comparative Study With Different Trigger Structures

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Xiaoqian Zhang;Haojie Cao;Li Chen;Sitong Tian
{"title":"Exploring Wide Working Coefficient of Trigatron Gas Switches: A Comparative Study With Different Trigger Structures","authors":"Xiaoqian Zhang;Haojie Cao;Li Chen;Sitong Tian","doi":"10.1109/TPS.2024.3496499","DOIUrl":null,"url":null,"abstract":"Reducing breakdown delay and jitter, and broadening the working voltage range of gas switches have been paramount challenges in pulse switch research. This study centers on trigger methods of trigatron gas switch, designing and testing three trigger structures—conventional, microprotrusion, and microplasma jet—under various conditions. Furthermore, synchronization experiments were conducted and compared under different trigger structures. The experimental results showed that the trigatron switch exhibits fast and slow breakdown modes with the conventional trigger structure and both the microprotrusion and microplasma jet trigger structures can reduce the breakdown delay and jitter by creating strong electric field distortion and providing initial electrons. The microprotrusion structure enables the switch to operate stably at a working coefficient higher than 50%, with a breakdown delay and jitter as low as 76.44 and 1.37 ns, while the microplasma jet structure enables the switch to operate at a working coefficient as low as 40%, with a breakdown delay and jitter of 78.15 and 5.83 ns, respectively. Compared with the microprotrusion structure, the microplasma jet trigger structure can achieve a lower working coefficient and performs excellently in synchronization experiments.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 10","pages":"5256-5265"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10768901/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing breakdown delay and jitter, and broadening the working voltage range of gas switches have been paramount challenges in pulse switch research. This study centers on trigger methods of trigatron gas switch, designing and testing three trigger structures—conventional, microprotrusion, and microplasma jet—under various conditions. Furthermore, synchronization experiments were conducted and compared under different trigger structures. The experimental results showed that the trigatron switch exhibits fast and slow breakdown modes with the conventional trigger structure and both the microprotrusion and microplasma jet trigger structures can reduce the breakdown delay and jitter by creating strong electric field distortion and providing initial electrons. The microprotrusion structure enables the switch to operate stably at a working coefficient higher than 50%, with a breakdown delay and jitter as low as 76.44 and 1.37 ns, while the microplasma jet structure enables the switch to operate at a working coefficient as low as 40%, with a breakdown delay and jitter of 78.15 and 5.83 ns, respectively. Compared with the microprotrusion structure, the microplasma jet trigger structure can achieve a lower working coefficient and performs excellently in synchronization experiments.
探索三管气体开关的宽工作系数:不同触发结构的比较研究
减小气体开关的击穿延迟和抖动,拓宽气体开关的工作电压范围,是脉冲开关研究的首要挑战。本研究围绕三管气体开关的触发方法,设计并测试了常规触发结构、微突触发结构和微等离子体喷射触发结构三种触发结构。并对不同触发结构下的同步实验进行了比较。实验结果表明,在传统触发结构下,三管开关具有快速和缓慢击穿模式,微突和微等离子体射流触发结构都可以通过产生强电场畸变和提供初始电子来减少击穿延迟和抖动。微突结构可使开关在工作系数大于50%的情况下稳定工作,击穿延迟和抖动分别低至76.44和1.37 ns;微等离子体射流结构可使开关在工作系数低至40%的情况下工作,击穿延迟和抖动分别为78.15和5.83 ns。与微突结构相比,微等离子体射流触发结构具有较低的工作系数,在同步实验中表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信