Design of a Retarding Field Energy Analyzer for the Large Plasma Device

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Shawn Wenjie Tang;Walter Gekelman
{"title":"Design of a Retarding Field Energy Analyzer for the Large Plasma Device","authors":"Shawn Wenjie Tang;Walter Gekelman","doi":"10.1109/TPS.2024.3492696","DOIUrl":null,"url":null,"abstract":"This article details the construction of a retarding field energy analyzer (RFEA) designed to measure the ion energy distribution function (IEDF) in a moderately dense laboratory plasma, such as that produced in the Large Plasma Device (LAPD). The RFEA was specifically developed to study ion acceleration in a magnetic reconnection experiment involving two kink-unstable flux ropes. It features four independently biasable grids, an electrically and thermally insulating exterior, a mesh grid stack as the entrance grid to collect more current, a solder-less design for easy assembly, and is constructed with readily available off-the-shelf materials for quick turnaround time. In this experiment, the RFEA demonstrated continuous operation for several days under LAPD conditions. It measured low-energy thermal ions with energies below 20 eV and observed field-aligned ion beams with energies between 9 and 15 eV near the reconnection region between the two ropes. For brevity, a detailed analysis of the ion beam and supporting 3-D gyrokinetic simulations are presented in a related manuscript [Tang et al., Phys. Plasmas 30, 082104 (2023)]. Ion temperature measurements of thermal ions within the flux ropes from the RFEA were consistent with those inferred from the spectroscopy of Doppler-broadened helium II spectral lines (320.3 nm).","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 10","pages":"5205-5215"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10762840/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

This article details the construction of a retarding field energy analyzer (RFEA) designed to measure the ion energy distribution function (IEDF) in a moderately dense laboratory plasma, such as that produced in the Large Plasma Device (LAPD). The RFEA was specifically developed to study ion acceleration in a magnetic reconnection experiment involving two kink-unstable flux ropes. It features four independently biasable grids, an electrically and thermally insulating exterior, a mesh grid stack as the entrance grid to collect more current, a solder-less design for easy assembly, and is constructed with readily available off-the-shelf materials for quick turnaround time. In this experiment, the RFEA demonstrated continuous operation for several days under LAPD conditions. It measured low-energy thermal ions with energies below 20 eV and observed field-aligned ion beams with energies between 9 and 15 eV near the reconnection region between the two ropes. For brevity, a detailed analysis of the ion beam and supporting 3-D gyrokinetic simulations are presented in a related manuscript [Tang et al., Phys. Plasmas 30, 082104 (2023)]. Ion temperature measurements of thermal ions within the flux ropes from the RFEA were consistent with those inferred from the spectroscopy of Doppler-broadened helium II spectral lines (320.3 nm).
大型等离子体装置减速场能量分析仪的设计
本文详细介绍了一种延迟场能量分析仪(RFEA)的结构,用于测量中等密度实验室等离子体中的离子能量分布函数(IEDF),例如在大型等离子体装置(LAPD)中产生的等离子体。RFEA是专门为研究两个扭结不稳定磁链在磁重联实验中的离子加速而开发的。它具有四个独立的可偏置网格,一个电和热绝缘的外部,一个网状网格堆栈作为入口网格,以收集更多的电流,一个易于组装的无焊接设计,并且由现成的材料构建,以快速周转时间。在本实验中,RFEA在LAPD条件下连续运行了数天。它测量了能量低于20 eV的低能热离子,并在两根绳索之间的重连接区域附近观察到能量在9至15 eV之间的场向离子束。为简洁起见,离子束的详细分析和支持的三维陀螺动力学模拟在相关手稿中提出[Tang et al., Phys。等离子体学报,2000,21(5):357 - 357。RFEA对通量绳内热离子的温度测量结果与多普勒展宽氦II谱线(320.3 nm)的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信