{"title":"ConoDL: a deep learning framework for rapid generation and prediction of conotoxins","authors":"Menghan Guo, Zengpeng Li, Xuejin Deng, Ding Luo, Jingyi Yang, Yingjun Chen, Weiwei Xue","doi":"10.1007/s10822-024-00582-0","DOIUrl":null,"url":null,"abstract":"<div><p>Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins’ vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides. Nevertheless, the limited data and the intricate structure of conotoxins constrain the application of deep learning models in the generation of conotoxins. We propose ConoDL, a framework for the generation and prediction of conotoxins, comprising the end-to-end conotoxin generation model (ConoGen) and the conotoxin prediction model (ConoPred). ConoGen employs transfer learning and a large language model (LLM) to tackle the challenges in conotoxin generation. Meanwhile, ConoPred filters artificial conotoxins generated by ConoGen, narrowing down the scope for subsequent research. A comprehensive evaluation of the peptide properties at both sequence and structure levels indicates that the artificial conotoxins generated by ConoDL exhibit a certain degree of similarity to natural conotoxins. Furthermore, ConoDL has generated artificial conotoxins with novel cysteine scaffolds. Therefore, ConoDL may uncover new cysteine scaffolds and conotoxin molecules, facilitating further exploration of the molecular space of conotoxins and the discovery of pharmacologically active variants.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00582-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins’ vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides. Nevertheless, the limited data and the intricate structure of conotoxins constrain the application of deep learning models in the generation of conotoxins. We propose ConoDL, a framework for the generation and prediction of conotoxins, comprising the end-to-end conotoxin generation model (ConoGen) and the conotoxin prediction model (ConoPred). ConoGen employs transfer learning and a large language model (LLM) to tackle the challenges in conotoxin generation. Meanwhile, ConoPred filters artificial conotoxins generated by ConoGen, narrowing down the scope for subsequent research. A comprehensive evaluation of the peptide properties at both sequence and structure levels indicates that the artificial conotoxins generated by ConoDL exhibit a certain degree of similarity to natural conotoxins. Furthermore, ConoDL has generated artificial conotoxins with novel cysteine scaffolds. Therefore, ConoDL may uncover new cysteine scaffolds and conotoxin molecules, facilitating further exploration of the molecular space of conotoxins and the discovery of pharmacologically active variants.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.