{"title":"Rethinking spatial-temporal contrastive learning for Urban traffic flow forecasting: multi-level augmentation framework","authors":"Lin Pan, Qianqian Ren, Zilong Li, Xingfeng Lv","doi":"10.1007/s40747-024-01754-z","DOIUrl":null,"url":null,"abstract":"<p>Graph neural networks integrating contrastive learning have attracted growing attention in urban traffic flow forecasting. However, most existing graph contrastive learning methods do not perform well in capturing local–global spatial dependencies or designing contrastive learning schemes for both spatial and temporal dimensions. We argue that these methods can not well extract the spatial-temporal features and are easily affected by data noise. In light of these challenges, this paper proposes an innovative <u>Urban</u> Spatial-Temporal <u>G</u>raph <u>C</u>ontrastive <u>L</u>earning framework (UrbanGCL) to improve the accuracy of urban traffic flow forecasting. Specifically, UrbanGCL proposes multi-level data augmentation to address data noise and incompleteness, learn both local and global topology features. The augmented traffic feature matrices and adjacency matrices are then fed into a simple yet effective dual-branch network with shared parameters to capture spatial-temporal correlations within traffic sequences. Moreover, we introduce spatial and temporal contrastive learning auxiliary tasks to alleviate the sparsity of supervision signal and extract the most critical spatial-temporal information. Extensive experimental results on four real-world urban datasets demonstrate that UrbanGCL significantly outperforms other state-of-the-art methods, with the maximum improvement reaching nearly 8.80%.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"33 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01754-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph neural networks integrating contrastive learning have attracted growing attention in urban traffic flow forecasting. However, most existing graph contrastive learning methods do not perform well in capturing local–global spatial dependencies or designing contrastive learning schemes for both spatial and temporal dimensions. We argue that these methods can not well extract the spatial-temporal features and are easily affected by data noise. In light of these challenges, this paper proposes an innovative Urban Spatial-Temporal Graph Contrastive Learning framework (UrbanGCL) to improve the accuracy of urban traffic flow forecasting. Specifically, UrbanGCL proposes multi-level data augmentation to address data noise and incompleteness, learn both local and global topology features. The augmented traffic feature matrices and adjacency matrices are then fed into a simple yet effective dual-branch network with shared parameters to capture spatial-temporal correlations within traffic sequences. Moreover, we introduce spatial and temporal contrastive learning auxiliary tasks to alleviate the sparsity of supervision signal and extract the most critical spatial-temporal information. Extensive experimental results on four real-world urban datasets demonstrate that UrbanGCL significantly outperforms other state-of-the-art methods, with the maximum improvement reaching nearly 8.80%.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.