Iterative Learning Control for Pareto Optimal Tracking in Incompatible Multisensor Systems

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhenfa Zhang;Dong Shen;Xinghuo Yu
{"title":"Iterative Learning Control for Pareto Optimal Tracking in Incompatible Multisensor Systems","authors":"Zhenfa Zhang;Dong Shen;Xinghuo Yu","doi":"10.1109/TCYB.2024.3514688","DOIUrl":null,"url":null,"abstract":"In a multisensor system, each sensor typically requires independent reference tracking while conflicts arise due to differing desired inputs for different sensors. This scenario presents an exemplary incompatible multiobjective tracking problem (IMOTP), which can be resolved as a multiobjective optimization problem (MOOP). We propose an iterative learning control strategy to resolve conflicts between sensors. First, we elaborate on the Pareto optimal solution (POS) set associated with the MOOP. Subsequently, we derive an update direction for Pareto improvement based on gradient-based algorithms for MOOP and establish a learning control algorithm ensuring that each update is a Pareto improvement and converges to a POS. These technical advancements effectively overcome tracking conflicts in multisensor systems. Illustrative simulations are provided to validate the theoretical results.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 3","pages":"1093-1106"},"PeriodicalIF":10.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10813569/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In a multisensor system, each sensor typically requires independent reference tracking while conflicts arise due to differing desired inputs for different sensors. This scenario presents an exemplary incompatible multiobjective tracking problem (IMOTP), which can be resolved as a multiobjective optimization problem (MOOP). We propose an iterative learning control strategy to resolve conflicts between sensors. First, we elaborate on the Pareto optimal solution (POS) set associated with the MOOP. Subsequently, we derive an update direction for Pareto improvement based on gradient-based algorithms for MOOP and establish a learning control algorithm ensuring that each update is a Pareto improvement and converges to a POS. These technical advancements effectively overcome tracking conflicts in multisensor systems. Illustrative simulations are provided to validate the theoretical results.
不兼容多传感器系统Pareto最优跟踪的迭代学习控制
在多传感器系统中,每个传感器通常需要独立的参考跟踪,而由于不同传感器的期望输入不同而产生冲突。这种情况提出了一个典型的不兼容多目标跟踪问题(IMOTP),它可以作为一个多目标优化问题(MOOP)来解决。我们提出了一种迭代学习控制策略来解决传感器之间的冲突。首先,我们详细阐述了与MOOP相关的Pareto最优解(POS)集。随后,我们基于基于梯度的MOOP算法推导了Pareto改进的更新方向,并建立了一种学习控制算法,确保每次更新都是Pareto改进并收敛到POS。这些技术进步有效地克服了多传感器系统中的跟踪冲突。通过实例仿真验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信