Optimal Sensor Placement for Motion Tracking of Soft Wearables Using Bayesian Sampling.

DongWook Kim, Seunghoon Kang, Yong-Lae Park
{"title":"Optimal Sensor Placement for Motion Tracking of Soft Wearables Using Bayesian Sampling.","authors":"DongWook Kim, Seunghoon Kang, Yong-Lae Park","doi":"10.1089/soro.2024.0044","DOIUrl":null,"url":null,"abstract":"<p><p>Soft sensors integrated or attached to robots or human bodies enable rapid and accurate estimation of the physical states of the target systems, including position, orientation, and force. While the use of a number of sensors enhances precision and reliability in estimation, it may constrain the movement of the target system or make the entire system complex and bulky. This article proposes a rapid, efficient framework for determining where to place the sensors on the system given the limited number of available sensors. In particular, given <math><mi>m</mi></math> candidates in location for sensor placement, the algorithm recommends <math><mrow><mrow><msub><mi>m</mi><mn>0</mn></msub></mrow></mrow></math> locations that guarantee the maximal estimation performance, based on Bayesian sampling. The sampling and optimization method aims to maximize the log-likelihood in nonparametric regression between the measured values of the selected sensors and the target references. The proposed approach for the optimal sensor placement is validated through two scenarios: full-body motion sensing with a soft wearable sensor suit and fingertip position tracking with a motion-capture system. The proposed algorithm successfully determines the sensor locations close to the optimum within 20 min of learning for both cases.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft sensors integrated or attached to robots or human bodies enable rapid and accurate estimation of the physical states of the target systems, including position, orientation, and force. While the use of a number of sensors enhances precision and reliability in estimation, it may constrain the movement of the target system or make the entire system complex and bulky. This article proposes a rapid, efficient framework for determining where to place the sensors on the system given the limited number of available sensors. In particular, given m candidates in location for sensor placement, the algorithm recommends m0 locations that guarantee the maximal estimation performance, based on Bayesian sampling. The sampling and optimization method aims to maximize the log-likelihood in nonparametric regression between the measured values of the selected sensors and the target references. The proposed approach for the optimal sensor placement is validated through two scenarios: full-body motion sensing with a soft wearable sensor suit and fingertip position tracking with a motion-capture system. The proposed algorithm successfully determines the sensor locations close to the optimum within 20 min of learning for both cases.

基于贝叶斯采样的软性可穿戴设备运动跟踪传感器优化配置。
集成或附着在机器人或人体上的软传感器能够快速准确地估计目标系统的物理状态,包括位置、方向和力。虽然使用多个传感器可以提高估计的精度和可靠性,但它可能会限制目标系统的运动或使整个系统变得复杂和笨重。本文提出了一个快速、有效的框架,用于在给定可用传感器数量有限的情况下确定传感器在系统上的位置。特别是,给定传感器放置位置的m个候选位置,该算法基于贝叶斯抽样推荐m0个保证最大估计性能的位置。采样和优化方法的目的是使所选传感器的测量值与目标参考值之间的非参数回归的对数似然最大化。通过两种场景验证了所提出的最佳传感器放置方法:使用柔软可穿戴传感器套装的全身运动传感和使用动作捕捉系统的指尖位置跟踪。在这两种情况下,该算法都能在20分钟的学习时间内确定接近最优的传感器位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信