F Treffert, M Aufderheide, J Bendahan, M P Hill, T Ma, D R Rusby, M P Selwood, G J Williams
{"title":"Platform development toward ultra-intense laser-based simultaneous hard x-ray and MeV neutron multimodal radiography.","authors":"F Treffert, M Aufderheide, J Bendahan, M P Hill, T Ma, D R Rusby, M P Selwood, G J Williams","doi":"10.1063/5.0219342","DOIUrl":null,"url":null,"abstract":"<p><p>Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample. Here, we present a concept for simultaneous single line-of-sight multimodal imaging using laser-driven simultaneous MeV neutrons and x rays. Radiography is performed using two simple optically coupled scintillators. Different shielding thicknesses are explored to demonstrate contrasting images that enable multi-material segmentation. Synthetic combined x-ray and neutron radiographs demonstrate the ability to resolve both the high-Z and low-Z material features within a test object for realistic x-ray and neutron spectra and flux ratios at existing and near-term laser facilities.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample. Here, we present a concept for simultaneous single line-of-sight multimodal imaging using laser-driven simultaneous MeV neutrons and x rays. Radiography is performed using two simple optically coupled scintillators. Different shielding thicknesses are explored to demonstrate contrasting images that enable multi-material segmentation. Synthetic combined x-ray and neutron radiographs demonstrate the ability to resolve both the high-Z and low-Z material features within a test object for realistic x-ray and neutron spectra and flux ratios at existing and near-term laser facilities.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.