Equipping a Wyatt multiangle, multidetector instrument for real-time particle and polymer sizing by simultaneous multiple-angle dynamic and static light scattering.
Xujun Zhang, Daniel Hicks, Honglin Liu, Natalie Glover, Zhaoxian Zhang, Arshay J Grant, Monneh Diggs, Ingeborg Schmidt-Krey, Paul S Russo
{"title":"Equipping a Wyatt multiangle, multidetector instrument for real-time particle and polymer sizing by simultaneous multiple-angle dynamic and static light scattering.","authors":"Xujun Zhang, Daniel Hicks, Honglin Liu, Natalie Glover, Zhaoxian Zhang, Arshay J Grant, Monneh Diggs, Ingeborg Schmidt-Krey, Paul S Russo","doi":"10.1063/5.0225923","DOIUrl":null,"url":null,"abstract":"<p><p>Well-constructed instruments may continue to perform beyond their manufacturer-supported service lifetime, which is typically limited by computer operating system compatibility or the availability of spare parts. Often, such equipment is condemned to surplus and destroyed. End-of-life plans that retain some of the material and energy used to create scientific instruments are of interest, just as in other manufacturing sectors. This is especially true when an instrument can be given new capabilities beyond those for which it was originally designed, maybe even surpassing newly built models. We report the \"upcycling\" of a Wyatt multiangle, multidetector instrument designed for static light scattering (SLS). The instrument retains SLS capability but was extended to multiangle, multidetector, multicorrelator dynamic light scattering operation by adding readily available fiber optics, detectors, and a modern, multichannel autocorrelator. Because one of the main catalysts of obsolescence is software compatibility, data processing was implemented with the stable Microsoft Excel platform, including a graphical user interface. Instrument performance is demonstrated with microemulsions, protein and polymer solutions, suspensions of latex particles, and suspensions of cellulose nanocrystals.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0225923","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Well-constructed instruments may continue to perform beyond their manufacturer-supported service lifetime, which is typically limited by computer operating system compatibility or the availability of spare parts. Often, such equipment is condemned to surplus and destroyed. End-of-life plans that retain some of the material and energy used to create scientific instruments are of interest, just as in other manufacturing sectors. This is especially true when an instrument can be given new capabilities beyond those for which it was originally designed, maybe even surpassing newly built models. We report the "upcycling" of a Wyatt multiangle, multidetector instrument designed for static light scattering (SLS). The instrument retains SLS capability but was extended to multiangle, multidetector, multicorrelator dynamic light scattering operation by adding readily available fiber optics, detectors, and a modern, multichannel autocorrelator. Because one of the main catalysts of obsolescence is software compatibility, data processing was implemented with the stable Microsoft Excel platform, including a graphical user interface. Instrument performance is demonstrated with microemulsions, protein and polymer solutions, suspensions of latex particles, and suspensions of cellulose nanocrystals.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.