Design of soft x-ray high diffraction efficiency and spectral flux Au/Ni bilayer coated laminar-type diffraction grating for objective soft x-ray flat-field spectrograph in a region of 250-550 eV.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
M Koike, T Hatano, A S Pirozhkov, T Murano, Y Oue, S Koshiya, T Kakio, K Kondo, M Terauchi
{"title":"Design of soft x-ray high diffraction efficiency and spectral flux Au/Ni bilayer coated laminar-type diffraction grating for objective soft x-ray flat-field spectrograph in a region of 250-550 eV.","authors":"M Koike, T Hatano, A S Pirozhkov, T Murano, Y Oue, S Koshiya, T Kakio, K Kondo, M Terauchi","doi":"10.1063/5.0232922","DOIUrl":null,"url":null,"abstract":"<p><p>An objective soft x-ray flat-field spectrograph employing a laminar-type bilayer coated, varied-line-spacing, spherical grating was designed to improve the detection limit and sensitivity of soft x-ray flat-field spectrographs in a region of 250-550 eV. As a design criterion, spectral flux, SF, [Hatano et al., Appl. Opt. 60, 4993-4999 (2021)], which is proportional to the amount of optical flux incident onto a detector and correlated with detection sensitivity, was used to be maximized. To enhance reflectivity with the coating design, Au/Ni bilayer coating was investigated to optimize the incidence angle and thickness of the Ni layer. This is based on the consideration that, in an energy region of over 400 eV, refractive indices of Au (bottom layer), Ni (top layer), and vacuum are increased from the bottom to the top of the layers, and a supplemental enhancement of reflectivity can be expected by optimizing the thickness of the top layer. Thus, the thickness of Ni and the incidence angle were chosen to be 8.0 nm and 86.00°, respectively. To maintain dispersion and spectral resolution of the grating used at an incidence angle of 87.07° as previously designed, groove density was increased to 1500 lines/mm from 1200 lines/mm of our previous design. Finally, a holographic, varied-line-spacing, spherical grating was designed assuming an aspherical-wavefront-recording configuration. The numerical simulation results showed that the spectrograph employing newly designed grating with laminar-type grooves and Au/Ni bilayer coating exhibited 2-18 times higher spectral flux as well as an improved spectral resolution compared with those obtained with the previously designed gratings and spectrographs.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0232922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

An objective soft x-ray flat-field spectrograph employing a laminar-type bilayer coated, varied-line-spacing, spherical grating was designed to improve the detection limit and sensitivity of soft x-ray flat-field spectrographs in a region of 250-550 eV. As a design criterion, spectral flux, SF, [Hatano et al., Appl. Opt. 60, 4993-4999 (2021)], which is proportional to the amount of optical flux incident onto a detector and correlated with detection sensitivity, was used to be maximized. To enhance reflectivity with the coating design, Au/Ni bilayer coating was investigated to optimize the incidence angle and thickness of the Ni layer. This is based on the consideration that, in an energy region of over 400 eV, refractive indices of Au (bottom layer), Ni (top layer), and vacuum are increased from the bottom to the top of the layers, and a supplemental enhancement of reflectivity can be expected by optimizing the thickness of the top layer. Thus, the thickness of Ni and the incidence angle were chosen to be 8.0 nm and 86.00°, respectively. To maintain dispersion and spectral resolution of the grating used at an incidence angle of 87.07° as previously designed, groove density was increased to 1500 lines/mm from 1200 lines/mm of our previous design. Finally, a holographic, varied-line-spacing, spherical grating was designed assuming an aspherical-wavefront-recording configuration. The numerical simulation results showed that the spectrograph employing newly designed grating with laminar-type grooves and Au/Ni bilayer coating exhibited 2-18 times higher spectral flux as well as an improved spectral resolution compared with those obtained with the previously designed gratings and spectrographs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信