{"title":"Enhancing Fruit Resistance against Fungal Pathogens Using a Pathogen-Associated Molecular Pattern PdEIX","authors":"Jiaxin He, Rui Li, Chan Xu, Xiaoyan Chen, Juanni Yao, Zhengguo Li, Yulin Cheng","doi":"10.1021/acs.jafc.4c07212","DOIUrl":null,"url":null,"abstract":"Fruit is an essential part of the human diet, and postharvest fungal diseases are the major cause of fruit postharvest losses worldwide. Pathogen-associated molecular patterns (PAMPs) are important elicitors from microbes, and the recognition between microbial PAMPs and plant receptors leads to PAMP-triggered immunity. Here, we identified a PAMP, PdEIX, that is an important protein elicitor with plant immunity-inducing activity, from the citrus green mold pathogen <i>Penicillium digitatum</i>. PdEIX showed an apoplastic location similar to that of known PAMPs, and plant receptor-like protein NbEIX2, receptor-like kinase BAK1, and other signaling components of plant immunity were required for PdEIX-triggered plant cell death in the model plant <i>Nicotiana benthamiana</i>. Moreover, PdEIX triggered a series of immune responses in citrus fruit and enhanced the resistance of citrus and other fruit against fungal pathogens. Our results indicate that application of a microbial PAMP as the plant immunity inducer is an effective strategy for controlling postharvest fungal diseases of fruit.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"27 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07212","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fruit is an essential part of the human diet, and postharvest fungal diseases are the major cause of fruit postharvest losses worldwide. Pathogen-associated molecular patterns (PAMPs) are important elicitors from microbes, and the recognition between microbial PAMPs and plant receptors leads to PAMP-triggered immunity. Here, we identified a PAMP, PdEIX, that is an important protein elicitor with plant immunity-inducing activity, from the citrus green mold pathogen Penicillium digitatum. PdEIX showed an apoplastic location similar to that of known PAMPs, and plant receptor-like protein NbEIX2, receptor-like kinase BAK1, and other signaling components of plant immunity were required for PdEIX-triggered plant cell death in the model plant Nicotiana benthamiana. Moreover, PdEIX triggered a series of immune responses in citrus fruit and enhanced the resistance of citrus and other fruit against fungal pathogens. Our results indicate that application of a microbial PAMP as the plant immunity inducer is an effective strategy for controlling postharvest fungal diseases of fruit.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.