Novel Phosphazenium Tetrafluoroborate Dopant Enables Efficient and Thermally Stable n‐Doped Organic Semiconductors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huan Wei, Jing Guo, Heng Liu, Tong Wu, Ping‐An Chen, Chuanding Dong, Shu‐Jen Wang, Stefan Schumacher, Yugang Bai, Ting Lei, Suhao Wang, Yuanyuan Hu
{"title":"Novel Phosphazenium Tetrafluoroborate Dopant Enables Efficient and Thermally Stable n‐Doped Organic Semiconductors","authors":"Huan Wei, Jing Guo, Heng Liu, Tong Wu, Ping‐An Chen, Chuanding Dong, Shu‐Jen Wang, Stefan Schumacher, Yugang Bai, Ting Lei, Suhao Wang, Yuanyuan Hu","doi":"10.1002/aelm.202400767","DOIUrl":null,"url":null,"abstract":"Thermal stability is crucial for doped organic semiconductors (OSCs) and their applications in organic thermoelectric (OTE) devices. However, the capacity of n‐dopants to produce thermally stable n‐doped OSC films has not been thoroughly explored, with few reports of high thermal stability. Here, a novel n‐dopant, phosphazenium tetrafluoroborate (P<jats:sub>2</jats:sub>BF<jats:sub>4</jats:sub>) is introduced, which effectively induces n‐doping in N2200, P(PzDPP‐CT2) and several other commonly used OSCs. Remarkably, the electrical conductivity of P<jats:sub>2</jats:sub>BF<jats:sub>4</jats:sub>‐doped OSC films remains almost unchanged even after heating at temperatures &gt; 150 °C for 24 h, far superior to the films doped with benchmark N‐DMBI. The exceptional thermal stability observed in P<jats:sub>2</jats:sub>BF<jats:sub>4</jats:sub>‐doped P(PzDPP‐CT2) films allows for stable operation of the corresponding organic thermoelectric devices at 150 °C for 16 h, a milestone not previously achieved. This study offers valuable insights into the development of n‐dopants capable of producing OSCs with outstanding thermal stability, paving the way for the practical realization of OTE devices with enhanced operation stability.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400767","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal stability is crucial for doped organic semiconductors (OSCs) and their applications in organic thermoelectric (OTE) devices. However, the capacity of n‐dopants to produce thermally stable n‐doped OSC films has not been thoroughly explored, with few reports of high thermal stability. Here, a novel n‐dopant, phosphazenium tetrafluoroborate (P2BF4) is introduced, which effectively induces n‐doping in N2200, P(PzDPP‐CT2) and several other commonly used OSCs. Remarkably, the electrical conductivity of P2BF4‐doped OSC films remains almost unchanged even after heating at temperatures > 150 °C for 24 h, far superior to the films doped with benchmark N‐DMBI. The exceptional thermal stability observed in P2BF4‐doped P(PzDPP‐CT2) films allows for stable operation of the corresponding organic thermoelectric devices at 150 °C for 16 h, a milestone not previously achieved. This study offers valuable insights into the development of n‐dopants capable of producing OSCs with outstanding thermal stability, paving the way for the practical realization of OTE devices with enhanced operation stability.
新型四氟硼酸磷掺杂剂实现高效和热稳定的n掺杂有机半导体
热稳定性对掺杂有机半导体及其在有机热电器件中的应用至关重要。然而,氮掺杂剂产生热稳定的氮掺杂OSC薄膜的能力尚未得到彻底的探索,很少有高热稳定性的报道。本文介绍了一种新型n掺杂剂——四氟硼酸磷(P2BF4),它能有效地诱导N2200、P(PzDPP‐CT2)和其他几种常用的OSCs的n掺杂。值得注意的是,P2BF4掺杂OSC薄膜的电导率即使在温度>;150°C, 24h,远优于掺杂基准N - DMBI的薄膜。在P2BF4掺杂P(PzDPP‐CT2)薄膜中观察到的特殊热稳定性使得相应的有机热电器件在150°C下稳定运行16小时,这是以前未实现的里程碑。该研究为开发能够产生具有出色热稳定性的OSCs的n掺杂剂提供了有价值的见解,为实际实现具有增强操作稳定性的OTE器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信