Didecyldimethylammonium chloride-induced lung fibrosis may be associated with phospholipidosis.

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Wonkyun Jung, Mi-Jin Yang, Min-Sung Kang, Jiyun Lim, Hyosun Choi, Ji Ae Lee, Kyung-Sik Yoon, Jin-Bae Kim, Eun-Jung Park
{"title":"Didecyldimethylammonium chloride-induced lung fibrosis may be associated with phospholipidosis.","authors":"Wonkyun Jung, Mi-Jin Yang, Min-Sung Kang, Jiyun Lim, Hyosun Choi, Ji Ae Lee, Kyung-Sik Yoon, Jin-Bae Kim, Eun-Jung Park","doi":"10.1016/j.taap.2024.117211","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, we dosed didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice. When dosed with DDAC of 0, 1, 4, and 8 μg/head for 13 weeks, the total number of pulmonary cells and the pulmonary levels of pro- and anti-inflammatory cytokines significantly increased, and chronic inflammatory lesions were detected with the production of collagen, collagen fibers, and lamellar body-like structures. Swelling of the nuclear envelope and nucleoplasmic components and generation of lipid droplets were also notably observed in the lung tissues of DDAC (8 μg/head)-treated mice. Furthermore, transcriptomic analysis performed using human bronchial epithelial cells showed that DDAC affected the expression of DNA damage, ER stress, lipid metabolism, and transcription regulation-related genes at 6 h after treatment, as it did 24 h treatment and that early growth response factor 1 gene was added to a list of the most up-regulated genes. Meanwhile, cytokines that are associated with the pathology of chronic lung diseases (IL-11, IL-24, and TGF-β) were slightly increased in the lung of DDAC-treated mice, and only the pulmonary level of CCL-2, but not CXCL-1 and CCL-3, increased in both sexes of mice. More importantly, the GM-CSF level increased dose-dependently in the lungs of both sexes of mice exposed to DDAC. Considering that the wound-healing process can take several weeks to complete, we suggest that DDAC-induced pulmonary fibrosis may be attributable to disruption of the wound-healing process due to continuous exposure to DDAC. We also hypothesize that the formation of lamellar bodies may be attributable to lysosomal accumulation of phospholipids separated from the destroyed lung tissue membrane.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":" ","pages":"117211"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, we dosed didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice. When dosed with DDAC of 0, 1, 4, and 8 μg/head for 13 weeks, the total number of pulmonary cells and the pulmonary levels of pro- and anti-inflammatory cytokines significantly increased, and chronic inflammatory lesions were detected with the production of collagen, collagen fibers, and lamellar body-like structures. Swelling of the nuclear envelope and nucleoplasmic components and generation of lipid droplets were also notably observed in the lung tissues of DDAC (8 μg/head)-treated mice. Furthermore, transcriptomic analysis performed using human bronchial epithelial cells showed that DDAC affected the expression of DNA damage, ER stress, lipid metabolism, and transcription regulation-related genes at 6 h after treatment, as it did 24 h treatment and that early growth response factor 1 gene was added to a list of the most up-regulated genes. Meanwhile, cytokines that are associated with the pathology of chronic lung diseases (IL-11, IL-24, and TGF-β) were slightly increased in the lung of DDAC-treated mice, and only the pulmonary level of CCL-2, but not CXCL-1 and CCL-3, increased in both sexes of mice. More importantly, the GM-CSF level increased dose-dependently in the lungs of both sexes of mice exposed to DDAC. Considering that the wound-healing process can take several weeks to complete, we suggest that DDAC-induced pulmonary fibrosis may be attributable to disruption of the wound-healing process due to continuous exposure to DDAC. We also hypothesize that the formation of lamellar bodies may be attributable to lysosomal accumulation of phospholipids separated from the destroyed lung tissue membrane.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信