A Hisada, S Hirota, K Magishi, N Fujiwara, Y Uwatoko
{"title":"Development of a new Bridgman-type high-pressure cell by using built-in gasket up to 9.4 GPa and evaluation of deformation.","authors":"A Hisada, S Hirota, K Magishi, N Fujiwara, Y Uwatoko","doi":"10.1063/5.0231811","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a built-in gasket for the Bridgman-type opposed-anvil high-pressure cell, featuring a PTFE (Teflon) capsule of ϕ 2.0 (1.5) × 2.5 mm3, filled with a liquid pressure-transmitting medium. This gasket, comprising a stainless-steel plane disk, a stainless-steel support ring, and pyrophyllite support gaskets, has enhanced the sample space height, allowed for precise adjustment of the anvil top area, and facilitated easy electrical insulation of lead wires. We calibrated the pressure by detecting phase transitions in Bi and Sn through resistivity measurements, achieving nearly hydrostatic pressure up to 9.4 GPa with this cell. Our analysis of the deformation of the gasket components under force has provided guidelines for effective pressurization.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0231811","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a built-in gasket for the Bridgman-type opposed-anvil high-pressure cell, featuring a PTFE (Teflon) capsule of ϕ 2.0 (1.5) × 2.5 mm3, filled with a liquid pressure-transmitting medium. This gasket, comprising a stainless-steel plane disk, a stainless-steel support ring, and pyrophyllite support gaskets, has enhanced the sample space height, allowed for precise adjustment of the anvil top area, and facilitated easy electrical insulation of lead wires. We calibrated the pressure by detecting phase transitions in Bi and Sn through resistivity measurements, achieving nearly hydrostatic pressure up to 9.4 GPa with this cell. Our analysis of the deformation of the gasket components under force has provided guidelines for effective pressurization.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.