Relation between magnetopause position and reconnection rate under quasi-steady solar wind dynamic pressure.

IF 3 3区 地球科学
Earth, Planets and Space Pub Date : 2024-01-01 Epub Date: 2024-12-18 DOI:10.1186/s40623-024-02101-9
Hyangpyo Kim, Hyunju Kim Connor, Ying Zou, Jaeheung Park, Rumi Nakamura, Kathryn McWilliams
{"title":"Relation between magnetopause position and reconnection rate under quasi-steady solar wind dynamic pressure.","authors":"Hyangpyo Kim, Hyunju Kim Connor, Ying Zou, Jaeheung Park, Rumi Nakamura, Kathryn McWilliams","doi":"10.1186/s40623-024-02101-9","DOIUrl":null,"url":null,"abstract":"<p><p>The lunar environment heliospheric X-ray imager (LEXI) and solar wind-magnetosphere-ionosphere link explorer (SMILE) will observe the magnetopause motion in soft X-rays to understand dayside reconnection modes as a function of solar wind conditions after their respective launches in the near future. To support their successful science mission, we investigate the relationship between the magnetopause position and the dayside reconnection rate by utilizing super dual auroral radar network (SuperDARN) observations and widely used empirical models of magnetopause position (Shue et al. in J Geophys Res 103:17691-17700. 10.1029/98JA01103, 1998 and Lin et al. in J Geophys Res 115:A04207. 10.1029/2009JA014235, 2010). We select three cases when the interplanetary magnetic field rotates during periods of quasi-steady solar wind dynamic pressure. We first estimate the dayside reconnection rate by calculating the electric field along the open-closed magnetic field boundary (OCB) in the OCB moving reference frame. Then, we estimate the magnetopause position near the local noon by inputting NASA OMNI solar wind data into the empirical magnetopause models. The reconnection rate shows anti-correlation with the magnetopause position that it generally increases as the magnetopause located closer to Earth and vice versa. Our result also confirms that the reconnection rate increases as the empirical coupling efficiency between solar wind and the magnetosphere increases.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s40623-024-02101-9.</p>","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"76 1","pages":"165"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth, Planets and Space","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40623-024-02101-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lunar environment heliospheric X-ray imager (LEXI) and solar wind-magnetosphere-ionosphere link explorer (SMILE) will observe the magnetopause motion in soft X-rays to understand dayside reconnection modes as a function of solar wind conditions after their respective launches in the near future. To support their successful science mission, we investigate the relationship between the magnetopause position and the dayside reconnection rate by utilizing super dual auroral radar network (SuperDARN) observations and widely used empirical models of magnetopause position (Shue et al. in J Geophys Res 103:17691-17700. 10.1029/98JA01103, 1998 and Lin et al. in J Geophys Res 115:A04207. 10.1029/2009JA014235, 2010). We select three cases when the interplanetary magnetic field rotates during periods of quasi-steady solar wind dynamic pressure. We first estimate the dayside reconnection rate by calculating the electric field along the open-closed magnetic field boundary (OCB) in the OCB moving reference frame. Then, we estimate the magnetopause position near the local noon by inputting NASA OMNI solar wind data into the empirical magnetopause models. The reconnection rate shows anti-correlation with the magnetopause position that it generally increases as the magnetopause located closer to Earth and vice versa. Our result also confirms that the reconnection rate increases as the empirical coupling efficiency between solar wind and the magnetosphere increases.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1186/s40623-024-02101-9.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth, Planets and Space
Earth, Planets and Space 地学天文-地球科学综合
CiteScore
5.80
自引率
16.70%
发文量
167
期刊介绍: Earth, Planets and Space (EPS) covers scientific articles in Earth and Planetary Sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, including instrumentations. Only new and original contents will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信