Graduate Student Literature Review: A review of mathematical modeling methods for bovine hormone dynamics*

IF 3.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Fearghus Downes, Marion McAfee, Kieran Hughes, Malgorzata J. McEvoy, Leo Creedon
{"title":"Graduate Student Literature Review: A review of mathematical modeling methods for bovine hormone dynamics*","authors":"Fearghus Downes,&nbsp;Marion McAfee,&nbsp;Kieran Hughes,&nbsp;Malgorzata J. McEvoy,&nbsp;Leo Creedon","doi":"10.3168/jds.2024-25563","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores various approaches to modeling the bovine estrus cycle, focusing on improving estrus detection to enhance reproductive management in dairy cattle. The review examines a range of mathematical models, including hormonal models based on ordinary differential equations that simulate hormone dynamics, as well as follicular competition models that track the maturation of individual follicles. In addition to these, precision dairy monitoring technologies (PDMT) are discussed, which utilize real-time physiological and behavioral data to provide predictive insights into estrus. The article assesses the effectiveness of both traditional modeling approaches and PDMT in improving breeding efficiency, minimizing labor, and optimizing herd management practices.</div></div>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":"108 4","pages":"Pages 3716-3733"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022030224014188","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores various approaches to modeling the bovine estrus cycle, focusing on improving estrus detection to enhance reproductive management in dairy cattle. The review examines a range of mathematical models, including hormonal models based on ordinary differential equations that simulate hormone dynamics, as well as follicular competition models that track the maturation of individual follicles. In addition to these, precision dairy monitoring technologies (PDMT) are discussed, which utilize real-time physiological and behavioral data to provide predictive insights into estrus. The article assesses the effectiveness of both traditional modeling approaches and PDMT in improving breeding efficiency, minimizing labor, and optimizing herd management practices.
牛激素动力学数学建模方法综述。
本文探讨了牛发情周期建模的各种方法,重点是改进发情检测以加强奶牛的生殖管理。这篇综述考察了一系列数学模型,包括基于常微分方程(ode)的模拟激素动态的激素模型,以及跟踪单个卵泡成熟的卵泡竞争模型。此外,还讨论了精密乳品监测技术(PDMT),该技术利用实时生理和行为数据提供对发情的预测见解。本文评估了传统建模方法和PDMT在提高育种效率、减少劳动力和优化畜群管理实践方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dairy Science
Journal of Dairy Science 农林科学-奶制品与动物科学
CiteScore
7.90
自引率
17.10%
发文量
784
审稿时长
4.2 months
期刊介绍: The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信