Shiwei Liang;Yu Yang;Jiaqi Chen;Lei Shu;Liang Wang;Jun Wang
{"title":"Improving Single-Event Effect Performance of SiC MOSFET by Excess Hole Extraction","authors":"Shiwei Liang;Yu Yang;Jiaqi Chen;Lei Shu;Liang Wang;Jun Wang","doi":"10.1109/TDMR.2024.3463698","DOIUrl":null,"url":null,"abstract":"Heavy ion strike-induced Single-Event Effect (SEE) is an essential reliability issue for SiC MOSFETs in radiation environments. The mass clustering of excess charges in SiC MOSFET is found to be root cause for device failure when heavy ion strikes. Based on the SEE failure mechanism, a planar gate SiC MOSFET with Hole Extraction Channel (HEC-MOS) and current aperture structure to improve its SEE immunity and electrical performance is proposed in this paper. The embedded \n<inline-formula> <tex-math>$P^{+}$ </tex-math></inline-formula>\n pillar provides an additional path to extract excess holes during heavy ion radiation so that transient currents and SEE response time are greatly reduced. As a result, the maximum lattice temperature (hot spot) decreases by 768K, and a single-event burnout (SEB) threshold voltage of 624V is achieved with linear energy transfer (LET) value of 75MeV\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\ncm2/mg for HEC-MOS, which is 1.4 times higher than conventional SiC MOSFET (Conv-MOS). Moreover, the gate oxide electric field also decreases ~10 times owing to much less clustered holes in JFET region, which ensures HEC-MOS superior immunity to single-event gate rupture (SEGR). Apart from improving SEE performance, a better trade-off with its electrical performances is also considered. By adopting optimized parameters in current spreading layers and P+ pillar, the specific ON-resistance of HEC-MOS is reduced by 17.5% while maintain a good forward blocking capability and SEB immunity. Therefore, HEC-MOS is a promising candidate for harsh environmental applications.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"507-513"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684250/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy ion strike-induced Single-Event Effect (SEE) is an essential reliability issue for SiC MOSFETs in radiation environments. The mass clustering of excess charges in SiC MOSFET is found to be root cause for device failure when heavy ion strikes. Based on the SEE failure mechanism, a planar gate SiC MOSFET with Hole Extraction Channel (HEC-MOS) and current aperture structure to improve its SEE immunity and electrical performance is proposed in this paper. The embedded
$P^{+}$
pillar provides an additional path to extract excess holes during heavy ion radiation so that transient currents and SEE response time are greatly reduced. As a result, the maximum lattice temperature (hot spot) decreases by 768K, and a single-event burnout (SEB) threshold voltage of 624V is achieved with linear energy transfer (LET) value of 75MeV
$\cdot $
cm2/mg for HEC-MOS, which is 1.4 times higher than conventional SiC MOSFET (Conv-MOS). Moreover, the gate oxide electric field also decreases ~10 times owing to much less clustered holes in JFET region, which ensures HEC-MOS superior immunity to single-event gate rupture (SEGR). Apart from improving SEE performance, a better trade-off with its electrical performances is also considered. By adopting optimized parameters in current spreading layers and P+ pillar, the specific ON-resistance of HEC-MOS is reduced by 17.5% while maintain a good forward blocking capability and SEB immunity. Therefore, HEC-MOS is a promising candidate for harsh environmental applications.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.