Chenyu Yang, He Chen, Yun Wu, Xiangguo Shen, Hongchun Liu, Taotao Liu, Xizhong Shen, Ruyi Xue, Nianrong Sun, Chunhui Deng
{"title":"Deep Learning-Enabled Rapid Metabolic Decoding of Small Extracellular Vesicles via Dual-Use Mass Spectroscopy Chip Array","authors":"Chenyu Yang, He Chen, Yun Wu, Xiangguo Shen, Hongchun Liu, Taotao Liu, Xizhong Shen, Ruyi Xue, Nianrong Sun, Chunhui Deng","doi":"10.1021/acs.analchem.4c04106","DOIUrl":null,"url":null,"abstract":"The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large data sets. Herein, we develop a high-throughput dual-use mass spectroscopic chip array (DUMSCA) for the rapid isolation and detection of plasma sEVs. The DUMSCA realizes more than a 50% increase in speed compared to traditional method and confirms proficiency in robust storage, reuse, high-efficiency desorption/ionization, and metabolite quantification. With the collected metabolic data matrix of sEVs, a deep learning model achieves high-performance diagnosis of Crohn’s disease. Furthermore, discovered biomarkers by feature sparsification and tandem mass spectrometry experiments also exhibited remarkable performance in diagnosis. This work demonstrates the rapidity and validity of DUMSCA for disease diagnosis, enabling the diagnosis of diseases without the necessity for prior knowledge and providing a high-throughput technology for sEV-based liquid biopsy that will empower its vigorous development.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"83 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large data sets. Herein, we develop a high-throughput dual-use mass spectroscopic chip array (DUMSCA) for the rapid isolation and detection of plasma sEVs. The DUMSCA realizes more than a 50% increase in speed compared to traditional method and confirms proficiency in robust storage, reuse, high-efficiency desorption/ionization, and metabolite quantification. With the collected metabolic data matrix of sEVs, a deep learning model achieves high-performance diagnosis of Crohn’s disease. Furthermore, discovered biomarkers by feature sparsification and tandem mass spectrometry experiments also exhibited remarkable performance in diagnosis. This work demonstrates the rapidity and validity of DUMSCA for disease diagnosis, enabling the diagnosis of diseases without the necessity for prior knowledge and providing a high-throughput technology for sEV-based liquid biopsy that will empower its vigorous development.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.