Full Spectral Overlap to Enhanced Fluorescence Quenching Ability by Using Covalent Organic Frameworks as a Springboard of Quencher for the Turn-on Fluorescence Immunoassay

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yuanyuan Cheng, Xiaomin Li, Shouyu Xue, Xuechi Yin, Yuechun Li, Jianlong Wang, Daohong Zhang
{"title":"Full Spectral Overlap to Enhanced Fluorescence Quenching Ability by Using Covalent Organic Frameworks as a Springboard of Quencher for the Turn-on Fluorescence Immunoassay","authors":"Yuanyuan Cheng, Xiaomin Li, Shouyu Xue, Xuechi Yin, Yuechun Li, Jianlong Wang, Daohong Zhang","doi":"10.1021/acs.analchem.4c03915","DOIUrl":null,"url":null,"abstract":"According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap. Thanks to the excellent visible light absorption of COF with donor–acceptor (D-A) structure, the localized surface plasmon resonance (LSPR) capability of AuNPs, and the broad light absorption of the PDA layer, the COF/Au@PDA exhibits intense absorption and a full spectral overlap toward aggregation-induced emission luminous (AIE) dots. Thereafter, COF/Au@PDA, with its immense potential to completely quench the fluorescence of AIE dots through primary IFE and secondary IFE, was applied to a bimodal LFIA platform for verification with a nitrofurazone metabolite as a model analyte. As expected, the detection sensitivity of the COF/Au@PDA-based FQ-LFIA (turn-on) is improved by 6-fold compared with that of the colorimetric (CM)-LFIA (turn-off). Further, ChatGpt was used to improve the assay accuracy and sensitivity, utilizing its high sensitivity to subtle changes in LFIA signals, especially for weak signals that are indeterminate with the naked eye. This work offers a potential approach for building a high-performance fluorescence quencher in the FQ-LFIA and indicates the potential for the application of artificial intelligence in highly sensitive LFIAs.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"24 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap. Thanks to the excellent visible light absorption of COF with donor–acceptor (D-A) structure, the localized surface plasmon resonance (LSPR) capability of AuNPs, and the broad light absorption of the PDA layer, the COF/Au@PDA exhibits intense absorption and a full spectral overlap toward aggregation-induced emission luminous (AIE) dots. Thereafter, COF/Au@PDA, with its immense potential to completely quench the fluorescence of AIE dots through primary IFE and secondary IFE, was applied to a bimodal LFIA platform for verification with a nitrofurazone metabolite as a model analyte. As expected, the detection sensitivity of the COF/Au@PDA-based FQ-LFIA (turn-on) is improved by 6-fold compared with that of the colorimetric (CM)-LFIA (turn-off). Further, ChatGpt was used to improve the assay accuracy and sensitivity, utilizing its high sensitivity to subtle changes in LFIA signals, especially for weak signals that are indeterminate with the naked eye. This work offers a potential approach for building a high-performance fluorescence quencher in the FQ-LFIA and indicates the potential for the application of artificial intelligence in highly sensitive LFIAs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信