Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Junyang Chen, Pengfei Ma, Jiayu Xu, Mingxi Zang, Wei Li
{"title":"Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics","authors":"Junyang Chen, Pengfei Ma, Jiayu Xu, Mingxi Zang, Wei Li","doi":"10.1021/acs.analchem.4c03770","DOIUrl":null,"url":null,"abstract":"Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands. In order to deeply explore the biomimetic recognition technology, this study proposed an elaborate aptamer screening strategy for targeting the protein characteristic structure. Taking the glycosylation of the FAP protein as a target, four FAP-specific aptamers with high performance were successfully generated. Further, using the champion aptamer as a recognition tool and combining it with ultrasensitive detection technology-surface enhanced Raman scattering (SERS), a novel dual aptamer-based sandwich sensor was constructed for the rapid determination of FAP. Due to the dual-specific recognition of the orthogonal aptamer pair, the sandwich method obviously improved the selectivity to FAP protein, with a maximum cross-reactivity of less than 8% and a quantitation limit of 100 pg/mL. It was conveniently applied in high-sensitive and high-selective detection of serum FAP in cancer patient samples. Therefore, the research of this study not only opens new access for the selection of antiglycan aptamers but also boosts the application of the FAP aptamer as a recognition tool in cancer diagnostics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"107 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands. In order to deeply explore the biomimetic recognition technology, this study proposed an elaborate aptamer screening strategy for targeting the protein characteristic structure. Taking the glycosylation of the FAP protein as a target, four FAP-specific aptamers with high performance were successfully generated. Further, using the champion aptamer as a recognition tool and combining it with ultrasensitive detection technology-surface enhanced Raman scattering (SERS), a novel dual aptamer-based sandwich sensor was constructed for the rapid determination of FAP. Due to the dual-specific recognition of the orthogonal aptamer pair, the sandwich method obviously improved the selectivity to FAP protein, with a maximum cross-reactivity of less than 8% and a quantitation limit of 100 pg/mL. It was conveniently applied in high-sensitive and high-selective detection of serum FAP in cancer patient samples. Therefore, the research of this study not only opens new access for the selection of antiglycan aptamers but also boosts the application of the FAP aptamer as a recognition tool in cancer diagnostics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信