Junyang Chen, Pengfei Ma, Jiayu Xu, Mingxi Zang, Wei Li
{"title":"Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics","authors":"Junyang Chen, Pengfei Ma, Jiayu Xu, Mingxi Zang, Wei Li","doi":"10.1021/acs.analchem.4c03770","DOIUrl":null,"url":null,"abstract":"Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands. In order to deeply explore the biomimetic recognition technology, this study proposed an elaborate aptamer screening strategy for targeting the protein characteristic structure. Taking the glycosylation of the FAP protein as a target, four FAP-specific aptamers with high performance were successfully generated. Further, using the champion aptamer as a recognition tool and combining it with ultrasensitive detection technology-surface enhanced Raman scattering (SERS), a novel dual aptamer-based sandwich sensor was constructed for the rapid determination of FAP. Due to the dual-specific recognition of the orthogonal aptamer pair, the sandwich method obviously improved the selectivity to FAP protein, with a maximum cross-reactivity of less than 8% and a quantitation limit of 100 pg/mL. It was conveniently applied in high-sensitive and high-selective detection of serum FAP in cancer patient samples. Therefore, the research of this study not only opens new access for the selection of antiglycan aptamers but also boosts the application of the FAP aptamer as a recognition tool in cancer diagnostics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"107 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands. In order to deeply explore the biomimetic recognition technology, this study proposed an elaborate aptamer screening strategy for targeting the protein characteristic structure. Taking the glycosylation of the FAP protein as a target, four FAP-specific aptamers with high performance were successfully generated. Further, using the champion aptamer as a recognition tool and combining it with ultrasensitive detection technology-surface enhanced Raman scattering (SERS), a novel dual aptamer-based sandwich sensor was constructed for the rapid determination of FAP. Due to the dual-specific recognition of the orthogonal aptamer pair, the sandwich method obviously improved the selectivity to FAP protein, with a maximum cross-reactivity of less than 8% and a quantitation limit of 100 pg/mL. It was conveniently applied in high-sensitive and high-selective detection of serum FAP in cancer patient samples. Therefore, the research of this study not only opens new access for the selection of antiglycan aptamers but also boosts the application of the FAP aptamer as a recognition tool in cancer diagnostics.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.