The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria.
IF 4.4 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Luying Sun, Minyi Jia, Kui Zhu, Zhihui Hao, Jianzhong Shen, Shaolin Wang
{"title":"The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria.","authors":"Luying Sun, Minyi Jia, Kui Zhu, Zhihui Hao, Jianzhong Shen, Shaolin Wang","doi":"10.1007/s12602-024-10424-y","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria. The bactericidal efficacy of CA and CAD is characterized by a dose-responsive paradigm, affirming their potential as therapeutic agents. These peptides exhibit minimal cytotoxicity and hemolytic effects, underscoring their safety profile. Advanced experimentation has elucidated that cecropins could disrupt the outer bacterial membrane, targeting lipid A, a pivotal constituent of the lipopolysaccharides (LPS) in the outer membrane as their antimicrobial bullseye. The affinity of cecropins for LPS and their antimicrobial action underscore the therapeutic potential of these peptides in targeting Gram-negative bacterial infections. These insights accentuate the promise of cecropins as viable \"antibiotic substitutes,\" paving the path for their expanded application in combating antibiotic resistance.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10424-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria. The bactericidal efficacy of CA and CAD is characterized by a dose-responsive paradigm, affirming their potential as therapeutic agents. These peptides exhibit minimal cytotoxicity and hemolytic effects, underscoring their safety profile. Advanced experimentation has elucidated that cecropins could disrupt the outer bacterial membrane, targeting lipid A, a pivotal constituent of the lipopolysaccharides (LPS) in the outer membrane as their antimicrobial bullseye. The affinity of cecropins for LPS and their antimicrobial action underscore the therapeutic potential of these peptides in targeting Gram-negative bacterial infections. These insights accentuate the promise of cecropins as viable "antibiotic substitutes," paving the path for their expanded application in combating antibiotic resistance.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.