IDyOMpy: A new Python-based model for statistical analysis of musical expectations.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Guilhem Marion, Fei Gao, Benjamin P Gold, Giovanni M Di Liberto, Shihab Shamma
{"title":"IDyOMpy: A new Python-based model for statistical analysis of musical expectations.","authors":"Guilhem Marion, Fei Gao, Benjamin P Gold, Giovanni M Di Liberto, Shihab Shamma","doi":"10.1016/j.jneumeth.2024.110347","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>IDyOM (Information Dynamics of Music) is the statistical model of music the most used in the community of neuroscience of music. It has been shown to allow for significant correlations with EEG (Marion, 2021), ECoG (Di Liberto, 2020) and fMRI (Cheung, 2019) recordings of human music listening. The language used for IDyOM -Lisp- is not very familiar to the neuroscience community and makes this model hard to use and more importantly to modify.</p><p><strong>New method: </strong>IDyOMpy is a new Python re-implementation and extension of IDyOM. This new model allows for computing the information content and entropy for each melody note after training on a corpus of melodies. In addition to those features, two new features are presented: probability estimation of silences and enculturation modeling.</p><p><strong>Results: </strong>We first describe the mathematical details of the implementation. We extensively compare the two models and show that they generate very similar outputs. We also support the validity of IDyOMpy by using its output to replicate previous EEG and behavioral results that relied on the original Lisp version (Gold, 2019; Di Liberto, 2020; Marion, 2021). Finally, it reproduced the computation of cultural distances between two different datasets as described in previous studies (i.e. Pearce, 2018).</p><p><strong>Comparison with existing methods and conclusions: </strong>Our model replicates the previous behaviors of IDyOM in a modern and easy-to-use language -Python. In addition, more features are presented. We deeply think this new version will be of great use to the community of neuroscience of music.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110347"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: IDyOM (Information Dynamics of Music) is the statistical model of music the most used in the community of neuroscience of music. It has been shown to allow for significant correlations with EEG (Marion, 2021), ECoG (Di Liberto, 2020) and fMRI (Cheung, 2019) recordings of human music listening. The language used for IDyOM -Lisp- is not very familiar to the neuroscience community and makes this model hard to use and more importantly to modify.

New method: IDyOMpy is a new Python re-implementation and extension of IDyOM. This new model allows for computing the information content and entropy for each melody note after training on a corpus of melodies. In addition to those features, two new features are presented: probability estimation of silences and enculturation modeling.

Results: We first describe the mathematical details of the implementation. We extensively compare the two models and show that they generate very similar outputs. We also support the validity of IDyOMpy by using its output to replicate previous EEG and behavioral results that relied on the original Lisp version (Gold, 2019; Di Liberto, 2020; Marion, 2021). Finally, it reproduced the computation of cultural distances between two different datasets as described in previous studies (i.e. Pearce, 2018).

Comparison with existing methods and conclusions: Our model replicates the previous behaviors of IDyOM in a modern and easy-to-use language -Python. In addition, more features are presented. We deeply think this new version will be of great use to the community of neuroscience of music.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信