{"title":"tRNA-Ser-UGA efficiently promotes the rapid release of duck hepatitis A virus from infected enterocytes and its remote dissemination to hepatocytes.","authors":"Xumin Ou, Yajia Gou, Lizhen Gong, Xiaoming Lin, Yi Liu, Wenwen Yang, Shun Chen, Mafeng Liu, Dekang Zhu, Mingshu Wang, Renyong Jia, Shaqiu Zhang, Ying Wu, Qiao Yang, Bing Tian, Xinxin Zhao, Zhen Wu, Yu He, Anchun Cheng","doi":"10.1016/j.psj.2024.104655","DOIUrl":null,"url":null,"abstract":"<p><p>Enterocytes are a necessary portal for fecal-oral transmission of viruses, including duck hepatitis A virus (DHAV), that act on the absorption of amino acids (AAs). We note that the rapid death of ducklings caused by DHAV is likely due to its rapid release from enterocytes. However, the underlying mechanism driving the release of DHAV remains poorly understood. Compared to infected fibroblasts, we found that DHAV-infected enterocytes triggered much more rapid viral release and induced swift and diverse remodeling of the mature tRNAome. Surprisingly, we found that tRNA-Ser-UGA in enterocytes was rapidly and specifically upregulated by DHAV infection and was highly correlated with serine decoding of DHAV, which is enriched with UCA codons. Overexpression of tRNA-Ser-UGA in enterocytes promoted rapid DHAV release, whereas overexpression of the cognate tRNA-Ser-GCU in enterocytes or the same tRNA in fibroblasts did not. In enterocytes, inhibition of serine charging of tRNA-Ser-UGA, transfection of a tRNA<sub>m</sub>-Ala-UGA backbone mutant or a tRNA<sub>m</sub>-Ser-UGA>CGA anticodon mutant decreased DHAV release. This finding suggests that tRNA-Ser-UGA plays a prominent role in DHAV release in infected enterocytes, which should be supported by efficient protein translation of the virus. Similarly, tRNA-Ser-UGA potently enhances DHAV protein synthesis, and the inhibition of charging of this tRNA or the transfection of the two mutants decreases DHAV protein synthesis. Phenotypically, the overexpression of tRNA-Ser-UGA in enterocytes further accelerates the spread of DHAV to hepatocytes. In conclusion, we revealed a novel tRNA-Ser-UGA that efficiently promotes the rapid release of DHAV by increasing serine decoding in infected enterocytes, thereby promoting remote cell-to-cell dissemination.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 2","pages":"104655"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104655","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Enterocytes are a necessary portal for fecal-oral transmission of viruses, including duck hepatitis A virus (DHAV), that act on the absorption of amino acids (AAs). We note that the rapid death of ducklings caused by DHAV is likely due to its rapid release from enterocytes. However, the underlying mechanism driving the release of DHAV remains poorly understood. Compared to infected fibroblasts, we found that DHAV-infected enterocytes triggered much more rapid viral release and induced swift and diverse remodeling of the mature tRNAome. Surprisingly, we found that tRNA-Ser-UGA in enterocytes was rapidly and specifically upregulated by DHAV infection and was highly correlated with serine decoding of DHAV, which is enriched with UCA codons. Overexpression of tRNA-Ser-UGA in enterocytes promoted rapid DHAV release, whereas overexpression of the cognate tRNA-Ser-GCU in enterocytes or the same tRNA in fibroblasts did not. In enterocytes, inhibition of serine charging of tRNA-Ser-UGA, transfection of a tRNAm-Ala-UGA backbone mutant or a tRNAm-Ser-UGA>CGA anticodon mutant decreased DHAV release. This finding suggests that tRNA-Ser-UGA plays a prominent role in DHAV release in infected enterocytes, which should be supported by efficient protein translation of the virus. Similarly, tRNA-Ser-UGA potently enhances DHAV protein synthesis, and the inhibition of charging of this tRNA or the transfection of the two mutants decreases DHAV protein synthesis. Phenotypically, the overexpression of tRNA-Ser-UGA in enterocytes further accelerates the spread of DHAV to hepatocytes. In conclusion, we revealed a novel tRNA-Ser-UGA that efficiently promotes the rapid release of DHAV by increasing serine decoding in infected enterocytes, thereby promoting remote cell-to-cell dissemination.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.