Development and Comprehensive Evaluation of Culture-Independent, Long Amplicon-Based Targeted Next-Generation Sequencing Methods for Predicting Antimicrobial Resistance in Tuberculosis

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lulu Zhang, Xia Yu, Chi Zhang, Xin Zhang, Hairong Huang, Junping Peng
{"title":"Development and Comprehensive Evaluation of Culture-Independent, Long Amplicon-Based Targeted Next-Generation Sequencing Methods for Predicting Antimicrobial Resistance in Tuberculosis","authors":"Lulu Zhang, Xia Yu, Chi Zhang, Xin Zhang, Hairong Huang, Junping Peng","doi":"10.1021/acs.analchem.4c04166","DOIUrl":null,"url":null,"abstract":"The great variety of antimicrobial resistance (AMR) profiles among tuberculosis (TB) patients necessitates a comprehensive detection method. This study developed culture-independent, long amplicon-based targeted next-generation sequencing (tNGS) methods for predicting AMR across 16 drugs within the <i>Mycobacterium tuberculosis</i> complex (MTBC). Multiplex PCR amplification was employed to enrich 20 gene regions, with sequencing performed on either the Oxford Nanopore Technologies (ONT) or Illumina platforms. Customized bioinformatics pipelines provide a streamlined process from raw data to clinician-friendly reports. The ONT tNGS method has been optimized, and its performance has been thoroughly evaluated, utilizing Q20+ chemistry in combination with the R10.4.1 flow cell. It requires only 15 high-quality reads per target gene to accurately identify all variants, with the turnaround time taking 4 h and 50 min. Studies confirmed that this method effectively identifies <i>Mycobacterium</i> species and was highly resistant to interference from other clinical pathogens. To ensure optimal coverage, it is recommended to input at least 500 copies of the genome and sequence 500MB of high-quality FASTQ data. Diagnostic performance evaluations demonstrate that this method achieves 98.35% concordance with phenotypic drug susceptibility testing (pDST) and is consistent with the results obtained from Xpert MTB/RIF assays. The design of long amplicons not only ensures comprehensive coverage of target regions but also simplifies primer design, facilitating compatibility with various sequencing platforms. Compared with previous studies, the optimized ONT tNGS method in this study significantly improves turnaround time, detection accuracy, and the comprehensive coverage of mutations associated with AMR.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The great variety of antimicrobial resistance (AMR) profiles among tuberculosis (TB) patients necessitates a comprehensive detection method. This study developed culture-independent, long amplicon-based targeted next-generation sequencing (tNGS) methods for predicting AMR across 16 drugs within the Mycobacterium tuberculosis complex (MTBC). Multiplex PCR amplification was employed to enrich 20 gene regions, with sequencing performed on either the Oxford Nanopore Technologies (ONT) or Illumina platforms. Customized bioinformatics pipelines provide a streamlined process from raw data to clinician-friendly reports. The ONT tNGS method has been optimized, and its performance has been thoroughly evaluated, utilizing Q20+ chemistry in combination with the R10.4.1 flow cell. It requires only 15 high-quality reads per target gene to accurately identify all variants, with the turnaround time taking 4 h and 50 min. Studies confirmed that this method effectively identifies Mycobacterium species and was highly resistant to interference from other clinical pathogens. To ensure optimal coverage, it is recommended to input at least 500 copies of the genome and sequence 500MB of high-quality FASTQ data. Diagnostic performance evaluations demonstrate that this method achieves 98.35% concordance with phenotypic drug susceptibility testing (pDST) and is consistent with the results obtained from Xpert MTB/RIF assays. The design of long amplicons not only ensures comprehensive coverage of target regions but also simplifies primer design, facilitating compatibility with various sequencing platforms. Compared with previous studies, the optimized ONT tNGS method in this study significantly improves turnaround time, detection accuracy, and the comprehensive coverage of mutations associated with AMR.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信