Near-Infrared Light-Activated DNA Nanodevice for Spatiotemporal In Vivo Fluorescence Imaging of Messenger RNA

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lei Li, Xiaotong He, Yang Zhang, Dashan Qi, Meixing Li, Hui Zhang, Qingming Shen, Quli Fan
{"title":"Near-Infrared Light-Activated DNA Nanodevice for Spatiotemporal In Vivo Fluorescence Imaging of Messenger RNA","authors":"Lei Li, Xiaotong He, Yang Zhang, Dashan Qi, Meixing Li, Hui Zhang, Qingming Shen, Quli Fan","doi":"10.1021/acs.analchem.4c05292","DOIUrl":null,"url":null,"abstract":"Real-time visualization of messenger RNA (mRNA) is essential for tumor classification, grading, and staging. However, the low signal-to-background ratios and nonspatiotemporal specific signal amplification restricted the in vivo imaging of mRNA. In this study, a near-infrared (NIR) light-activated DNA nanodevice (DND) was developed for spatiotemporal in vivo fluorescence imaging of mRNA. The DND was fabricated by encapsulating indocyanine green (ICG) and DNA fluorescent probes within thermosensitive liposomes and subsequently functionalizing the liposomes with aptamers. The ICG offers the “always-on” fluorescence signal, offering a feasible strategy for monitoring DND distribution. The fluorescence signal of DNA probes remains inactive (“off” state) during the delivery process. Upon targeted delivery of the DNDs to tumor cells via aptamer recognition, the thermosensitive liposomes could be dissociated by the photothermal effect induced by ICG under near-infrared irradiation, thereby facilitating the release of DNA probes. The DNA probes were activated (“turn on”) by tumor-specific thymidine kinase 1 (TK1) mRNA through toehold-mediated strand displacement cascades, enabling the signal-amplified fluorescence imaging of mRNA. This study reveals the distinctive light-activated merit and remarkable fluorescence imaging of DNDs, highlighting their great potential to promote progress in spatiotemporal resolution imaging of other disease-relevant RNAs in vivo.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"27 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time visualization of messenger RNA (mRNA) is essential for tumor classification, grading, and staging. However, the low signal-to-background ratios and nonspatiotemporal specific signal amplification restricted the in vivo imaging of mRNA. In this study, a near-infrared (NIR) light-activated DNA nanodevice (DND) was developed for spatiotemporal in vivo fluorescence imaging of mRNA. The DND was fabricated by encapsulating indocyanine green (ICG) and DNA fluorescent probes within thermosensitive liposomes and subsequently functionalizing the liposomes with aptamers. The ICG offers the “always-on” fluorescence signal, offering a feasible strategy for monitoring DND distribution. The fluorescence signal of DNA probes remains inactive (“off” state) during the delivery process. Upon targeted delivery of the DNDs to tumor cells via aptamer recognition, the thermosensitive liposomes could be dissociated by the photothermal effect induced by ICG under near-infrared irradiation, thereby facilitating the release of DNA probes. The DNA probes were activated (“turn on”) by tumor-specific thymidine kinase 1 (TK1) mRNA through toehold-mediated strand displacement cascades, enabling the signal-amplified fluorescence imaging of mRNA. This study reveals the distinctive light-activated merit and remarkable fluorescence imaging of DNDs, highlighting their great potential to promote progress in spatiotemporal resolution imaging of other disease-relevant RNAs in vivo.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信