Top-Down Computational Design of Molecule Recognition Peptides (MRPs) for Enzyme-Peptide Self-Assembly and Chemiluminescent Biosensing

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lihong Yu, Chenglin Yang, Shuting Cheng, Qianqian Jiang, Yuehong Pang, Xiaofang Shen
{"title":"Top-Down Computational Design of Molecule Recognition Peptides (MRPs) for Enzyme-Peptide Self-Assembly and Chemiluminescent Biosensing","authors":"Lihong Yu, Chenglin Yang, Shuting Cheng, Qianqian Jiang, Yuehong Pang, Xiaofang Shen","doi":"10.1021/acs.analchem.4c04295","DOIUrl":null,"url":null,"abstract":"The recognition of small molecules plays a crucial role in disease diagnosis, environmental assessment, and food safety. Currently, their recognition elements predominantly rely on antibodies and aptamers while suffering from a limitation of the complex screening process due to the low immunogenicity of small molecules. Herein, we present a top-down computational design strategy for molecule recognition peptides (MRPs) for enzyme-peptide self-assembly and chemiluminescence biosensing. Taking ochratoxin A (OTA) as an illustrative example, human serum albumin (HSA) was selected as the parental protein due to its high affinity for OTA binding. Through iterative computational simulations involving the binding domain of the HSA-OTA complex, our strategy identified a specific 15-mer MRP (RLKCASLKFGERAFK), which possesses excellent binding affinity (38.02 ± 1.24 nM) against OTA. Molecular dynamics simulations revealed that the 15-mer MRP unfolds into a flexible short chain with high affinity for OTA, but exhibits weak or no binding affinity with five structurally similar mycotoxins. Furthermore, we developed a novel enzyme-peptide self-assembly approach mediated by calcium(II) to obtain nanoflowers, which integrates both the recognition element (MRP) and the signal translator (enzyme) for chemiluminescence biosensing. The assembled nanoflowers allow MRPs to be directly utilized as a tracer for OTA biosensing without labeling or secondary antibodies. This computational-to-application approach offers a new route for small-molecule recognition.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"20 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04295","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recognition of small molecules plays a crucial role in disease diagnosis, environmental assessment, and food safety. Currently, their recognition elements predominantly rely on antibodies and aptamers while suffering from a limitation of the complex screening process due to the low immunogenicity of small molecules. Herein, we present a top-down computational design strategy for molecule recognition peptides (MRPs) for enzyme-peptide self-assembly and chemiluminescence biosensing. Taking ochratoxin A (OTA) as an illustrative example, human serum albumin (HSA) was selected as the parental protein due to its high affinity for OTA binding. Through iterative computational simulations involving the binding domain of the HSA-OTA complex, our strategy identified a specific 15-mer MRP (RLKCASLKFGERAFK), which possesses excellent binding affinity (38.02 ± 1.24 nM) against OTA. Molecular dynamics simulations revealed that the 15-mer MRP unfolds into a flexible short chain with high affinity for OTA, but exhibits weak or no binding affinity with five structurally similar mycotoxins. Furthermore, we developed a novel enzyme-peptide self-assembly approach mediated by calcium(II) to obtain nanoflowers, which integrates both the recognition element (MRP) and the signal translator (enzyme) for chemiluminescence biosensing. The assembled nanoflowers allow MRPs to be directly utilized as a tracer for OTA biosensing without labeling or secondary antibodies. This computational-to-application approach offers a new route for small-molecule recognition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信