A reconstruction method for ptychography based on residual dense network.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Mengnan Liu, Yu Han, Xiaoqi Xi, Lei Li, Zijian Xu, Xiangzhi Zhang, Linlin Zhu, Bin Yan
{"title":"A reconstruction method for ptychography based on residual dense network.","authors":"Mengnan Liu, Yu Han, Xiaoqi Xi, Lei Li, Zijian Xu, Xiangzhi Zhang, Linlin Zhu, Bin Yan","doi":"10.3233/XST-240114","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.g., integrated circuits (IC). Especially when ptychography is combined with computed tomography (CT) or computed laminography (CL), time consumption increases greatly.</p><p><strong>Objective: </strong>In this work, we aim to propose a new deep learning-based approach to implement a quick and robust reconstruction of ptychography.</p><p><strong>Methods: </strong>Inspired by the strong advantages of the residual dense network for computer vision tasks, we propose a dense residual two-branch network (RDenPtycho) based on the ptychography two-branch reconstruction architecture for the fast and robust reconstruction of ptychography. The network relies on the residual dense block to construct mappings from diffraction patterns to amplitudes and phases. In addition, we integrate the physical processes of ptychography into the training of the network to further improve the performance.</p><p><strong>Results: </strong>The proposed RDenPtycho is evaluated using the publicly available ptychography dataset from the Advanced Photon Source. The results show that the proposed method can faithfully and robustly recover the detailed information of the objects. Ablation experiments demonstrate the effectiveness of the components in the proposed method for performance enhancement.</p><p><strong>Significance: </strong>The proposed method enables fast, accurate, and robust reconstruction of ptychography, and is of potential significance for 3D ptychography. The proposed method and experiments can resolve similar problems in other fields.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-240114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.g., integrated circuits (IC). Especially when ptychography is combined with computed tomography (CT) or computed laminography (CL), time consumption increases greatly.

Objective: In this work, we aim to propose a new deep learning-based approach to implement a quick and robust reconstruction of ptychography.

Methods: Inspired by the strong advantages of the residual dense network for computer vision tasks, we propose a dense residual two-branch network (RDenPtycho) based on the ptychography two-branch reconstruction architecture for the fast and robust reconstruction of ptychography. The network relies on the residual dense block to construct mappings from diffraction patterns to amplitudes and phases. In addition, we integrate the physical processes of ptychography into the training of the network to further improve the performance.

Results: The proposed RDenPtycho is evaluated using the publicly available ptychography dataset from the Advanced Photon Source. The results show that the proposed method can faithfully and robustly recover the detailed information of the objects. Ablation experiments demonstrate the effectiveness of the components in the proposed method for performance enhancement.

Significance: The proposed method enables fast, accurate, and robust reconstruction of ptychography, and is of potential significance for 3D ptychography. The proposed method and experiments can resolve similar problems in other fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信