Anti-inflammatory Effects of Membrane Vesicles from Eubacterium rectale via the NLRP3 Signal Pathway.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hongxia Zhang, Yanan Zhao, Dengfu Li, Haixia Li, Zhu Wang, Lu Zhang, Huafeng Niu, Yuchen Huang, Chenchong Zhao, Yaping Jin, Dong Zhou
{"title":"Anti-inflammatory Effects of Membrane Vesicles from Eubacterium rectale via the NLRP3 Signal Pathway.","authors":"Hongxia Zhang, Yanan Zhao, Dengfu Li, Haixia Li, Zhu Wang, Lu Zhang, Huafeng Niu, Yuchen Huang, Chenchong Zhao, Yaping Jin, Dong Zhou","doi":"10.1007/s12602-024-10432-y","DOIUrl":null,"url":null,"abstract":"<p><p>Eubacterium rectale (E. rectale) has the ability to attenuate systemic and intestinal inflammation. Its naturally secreted membrane vesicles (MVs) likely play a crucial role in this process. The objective of this study is to investigate the anti-inflammatory effects of E. rectale and its membrane vesicles (MVs). An inflammation model was established by inducing an inflammatory response in Raw 264.7 cells using lipopolysaccharide (LPS). Subsequently, the cells were pre-treated with E. rectale and its MVs, and the expression levels of IL-1β, IL-6, TNF-α, and IL-10 in the cells were then detected using RT-qPCR. ELISA was used to measure the secretion levels of IL-1β, while western blot analysis was employed to assess the expression of key proteins in the IL-1β pathway, specifically ASC, Caspase 1, and NLRP3. The results revealed that both E. rectale and its MVs significantly reduced the expression of the inflammatory cytokines IL-1β and TNF-α in Raw 264.7 cells, which were induced by LPS. Additionally, they markedly upregulated the expression of the anti-inflammatory cytokine IL-10 and suppressed IL-1β expression via the NLRP3-Caspase 1-ASC signaling pathway. These findings suggest that E. rectale, through its membrane vesicles, can attenuate LPS-induced NLRP3 inflammasome activation, thereby mitigating the inflammatory response in Raw 264.7 cells.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10432-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eubacterium rectale (E. rectale) has the ability to attenuate systemic and intestinal inflammation. Its naturally secreted membrane vesicles (MVs) likely play a crucial role in this process. The objective of this study is to investigate the anti-inflammatory effects of E. rectale and its membrane vesicles (MVs). An inflammation model was established by inducing an inflammatory response in Raw 264.7 cells using lipopolysaccharide (LPS). Subsequently, the cells were pre-treated with E. rectale and its MVs, and the expression levels of IL-1β, IL-6, TNF-α, and IL-10 in the cells were then detected using RT-qPCR. ELISA was used to measure the secretion levels of IL-1β, while western blot analysis was employed to assess the expression of key proteins in the IL-1β pathway, specifically ASC, Caspase 1, and NLRP3. The results revealed that both E. rectale and its MVs significantly reduced the expression of the inflammatory cytokines IL-1β and TNF-α in Raw 264.7 cells, which were induced by LPS. Additionally, they markedly upregulated the expression of the anti-inflammatory cytokine IL-10 and suppressed IL-1β expression via the NLRP3-Caspase 1-ASC signaling pathway. These findings suggest that E. rectale, through its membrane vesicles, can attenuate LPS-induced NLRP3 inflammasome activation, thereby mitigating the inflammatory response in Raw 264.7 cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信