Reconstructing damaged fNIRS signals with a generative deep learning model

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingxu Zhi, Baiqiang Zhang, Bingxin Xu, Fei Wan, Peisong Niu, Haijing Niu
{"title":"Reconstructing damaged fNIRS signals with a generative deep learning model","authors":"Yingxu Zhi,&nbsp;Baiqiang Zhang,&nbsp;Bingxin Xu,&nbsp;Fei Wan,&nbsp;Peisong Niu,&nbsp;Haijing Niu","doi":"10.1007/s10462-024-11028-2","DOIUrl":null,"url":null,"abstract":"<div><p>Functional near-infrared spectroscopy (fNIRS) imaging offers a promising avenue for measuring brain function in both healthy and diseased cohorts. However, signal quality in fNIRS data frequently encounters challenges, such as low signal-to-noise ratio or substantial motion artifacts in one or multiple measurement channels, impeding the comprehensive exploitation of the data. Developing a valid method to improve the quality of damaged fNIRS signals is crucial, particularly given the extensive use of wearable fNIRS devices in natural settings where noise issues are even more unavoidable. Here, we proposed a generative deep learning approach to recover damaged fNIRS signals in one or more measurement channels. The model captured spatial and temporal variations in the time series of fNIRS data by integrating multiscale convolutional layers, gated recurrent units (GRUs), and linear regression analyses. We trained the model on a resting-state fNIRS dataset from healthy elderly individuals and evaluated its performance in terms of reconstruction accuracy and functional connectivity matrix similarity. Collectively, the proposed model exhbited an excellent performance for the reconstruction of damaged fNIRS time series. In individual channel-level, the model can accurately reconstruct damaged fNIRS time series (mean correlation = 0.80 ± 0.14) while preserving intervariable relationships (correlation = 0.93). In multiple channel-level, the model maintained robust reconstruction accuracy and consistency in terms of functional connectivity. Our findings underscore the potential of generative deep learning techniques in reconstructing damaged fNIRS signals, providing a novel perspective for the efficient utilization of data in clinical diagnosis and brain research.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11028-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11028-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Functional near-infrared spectroscopy (fNIRS) imaging offers a promising avenue for measuring brain function in both healthy and diseased cohorts. However, signal quality in fNIRS data frequently encounters challenges, such as low signal-to-noise ratio or substantial motion artifacts in one or multiple measurement channels, impeding the comprehensive exploitation of the data. Developing a valid method to improve the quality of damaged fNIRS signals is crucial, particularly given the extensive use of wearable fNIRS devices in natural settings where noise issues are even more unavoidable. Here, we proposed a generative deep learning approach to recover damaged fNIRS signals in one or more measurement channels. The model captured spatial and temporal variations in the time series of fNIRS data by integrating multiscale convolutional layers, gated recurrent units (GRUs), and linear regression analyses. We trained the model on a resting-state fNIRS dataset from healthy elderly individuals and evaluated its performance in terms of reconstruction accuracy and functional connectivity matrix similarity. Collectively, the proposed model exhbited an excellent performance for the reconstruction of damaged fNIRS time series. In individual channel-level, the model can accurately reconstruct damaged fNIRS time series (mean correlation = 0.80 ± 0.14) while preserving intervariable relationships (correlation = 0.93). In multiple channel-level, the model maintained robust reconstruction accuracy and consistency in terms of functional connectivity. Our findings underscore the potential of generative deep learning techniques in reconstructing damaged fNIRS signals, providing a novel perspective for the efficient utilization of data in clinical diagnosis and brain research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信