Giang Nguyen, Judith Sáinz-Pardo Díaz, Amanda Calatrava, Lisana Berberi, Oleksandr Lytvyn, Valentin Kozlov, Viet Tran, Germán Moltó, Álvaro López García
{"title":"Landscape of machine learning evolution: privacy-preserving federated learning frameworks and tools","authors":"Giang Nguyen, Judith Sáinz-Pardo Díaz, Amanda Calatrava, Lisana Berberi, Oleksandr Lytvyn, Valentin Kozlov, Viet Tran, Germán Moltó, Álvaro López García","doi":"10.1007/s10462-024-11036-2","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning is one of the most widely used technologies in the field of Artificial Intelligence. As machine learning applications become increasingly ubiquitous, concerns about data privacy and security have also grown. The work in this paper presents a broad theoretical landscape concerning the evolution of machine learning and deep learning from centralized to distributed learning, first in relation to privacy-preserving machine learning and secondly in the area of privacy-enhancing technologies. It provides a comprehensive landscape of the synergy between distributed machine learning and privacy-enhancing technologies, with federated learning being one of the most prominent architectures. Various distributed learning approaches to privacy-aware techniques are structured in a review, followed by an in-depth description of relevant frameworks and libraries, more particularly in the context of federated learning. The paper also highlights the need for data protection and privacy addressed from different approaches, key findings in the field concerning AI applications, and advances in the development of related tools and techniques.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11036-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11036-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning is one of the most widely used technologies in the field of Artificial Intelligence. As machine learning applications become increasingly ubiquitous, concerns about data privacy and security have also grown. The work in this paper presents a broad theoretical landscape concerning the evolution of machine learning and deep learning from centralized to distributed learning, first in relation to privacy-preserving machine learning and secondly in the area of privacy-enhancing technologies. It provides a comprehensive landscape of the synergy between distributed machine learning and privacy-enhancing technologies, with federated learning being one of the most prominent architectures. Various distributed learning approaches to privacy-aware techniques are structured in a review, followed by an in-depth description of relevant frameworks and libraries, more particularly in the context of federated learning. The paper also highlights the need for data protection and privacy addressed from different approaches, key findings in the field concerning AI applications, and advances in the development of related tools and techniques.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.