Experimental evidence of the excited-state mixing in the blue emitter for organic light-emitting diodes†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vladyslav Ievtukhov, Michał Mońka, Olga Ciupak, Irena Bylińska, Piotr Bojarski, Karol Krzymiński and Illia E. Serdiuk
{"title":"Experimental evidence of the excited-state mixing in the blue emitter for organic light-emitting diodes†","authors":"Vladyslav Ievtukhov, Michał Mońka, Olga Ciupak, Irena Bylińska, Piotr Bojarski, Karol Krzymiński and Illia E. Serdiuk","doi":"10.1039/D4TC03925D","DOIUrl":null,"url":null,"abstract":"<p >High hopes have been placed on organic emitters, which are supposed to solve the problem of low stability of blue OLEDs. A peculiar phenomenon of thermally activated delayed fluorescence (TADF), which brought such emitters to the range of the top-studied materials for organic optoelectronics within the last decade, remains poorly understood. Here, we report the results of comprehensive photophysical studies of one of the most successful candidates for blue TADF OLEDs, the TMCz-BO emitter (9-(5,9-dioxa-13<em>b</em>-boranaphtho[3,2,1-<em>de</em>]anthracen-7-yl)-1,3,6,8-tetramethyl-9<em>H</em>-carbazole) characterised by outstanding triplet-harvesting properties. One of the main aims of this work is to understand the reason for these unique properties. Steady-state and time-resolved spectroscopic investigations in media of various polarity, viscosity, and temperature reveal that at least five excited states of different characters and multiplicity are responsible for the emissive and spin–flip transitions in the TMCz-BO molecular systems. First of all, in contrast to typical donor–acceptor TADF emitters, the S<small><sub>1</sub></small> state of TMCz-BO does not have a pure charge-transfer character but shows a considerable contribution of the locally-excited state of the acceptor fragment, which provides a fast radiative rate. The T<small><sub>1</sub></small> state is a superposition of two locally excited and one charge-transfer states, providing reasonable spin–orbit coupling. Regarding the TADF mechanism in various media, reverse intersystem crossing follows the T<small><sub>1</sub></small> → S<small><sub>1</sub></small> model, considering the excited-state mixing, a notion introduced here to explain the triple and dual nature of the respective states. Such a mixing is dynamic in low-viscosity solutions due to low barriers for molecular vibrations. In films with a host matrix, a static excited-state mixing occurs, assisted by the low-amplitude vibrations within the local energetic minimum of the emitting species. The high efficiency of the excited-state mixing in TMCz-BO is explained by the rigid structure of its donor and acceptor fragments and their limited but still active mutual rotations. This provides negligible structural differences between various electronic states, enabling low reorganisation energies favourable for radiative and spin–flip processes while maintaining vibrational activation of spin–orbit coupling. Despite a lower reverse intersystem crossing rate in media of high viscosity, TMCz-BO shows rare near-UV TADF in films with the non-polar host. Our results thus highlight the unique and intriguing properties of TMCz-BO, opening up new perspectives for further research and potential improvements in OLED applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 1","pages":" 68-80"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03925d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High hopes have been placed on organic emitters, which are supposed to solve the problem of low stability of blue OLEDs. A peculiar phenomenon of thermally activated delayed fluorescence (TADF), which brought such emitters to the range of the top-studied materials for organic optoelectronics within the last decade, remains poorly understood. Here, we report the results of comprehensive photophysical studies of one of the most successful candidates for blue TADF OLEDs, the TMCz-BO emitter (9-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-1,3,6,8-tetramethyl-9H-carbazole) characterised by outstanding triplet-harvesting properties. One of the main aims of this work is to understand the reason for these unique properties. Steady-state and time-resolved spectroscopic investigations in media of various polarity, viscosity, and temperature reveal that at least five excited states of different characters and multiplicity are responsible for the emissive and spin–flip transitions in the TMCz-BO molecular systems. First of all, in contrast to typical donor–acceptor TADF emitters, the S1 state of TMCz-BO does not have a pure charge-transfer character but shows a considerable contribution of the locally-excited state of the acceptor fragment, which provides a fast radiative rate. The T1 state is a superposition of two locally excited and one charge-transfer states, providing reasonable spin–orbit coupling. Regarding the TADF mechanism in various media, reverse intersystem crossing follows the T1 → S1 model, considering the excited-state mixing, a notion introduced here to explain the triple and dual nature of the respective states. Such a mixing is dynamic in low-viscosity solutions due to low barriers for molecular vibrations. In films with a host matrix, a static excited-state mixing occurs, assisted by the low-amplitude vibrations within the local energetic minimum of the emitting species. The high efficiency of the excited-state mixing in TMCz-BO is explained by the rigid structure of its donor and acceptor fragments and their limited but still active mutual rotations. This provides negligible structural differences between various electronic states, enabling low reorganisation energies favourable for radiative and spin–flip processes while maintaining vibrational activation of spin–orbit coupling. Despite a lower reverse intersystem crossing rate in media of high viscosity, TMCz-BO shows rare near-UV TADF in films with the non-polar host. Our results thus highlight the unique and intriguing properties of TMCz-BO, opening up new perspectives for further research and potential improvements in OLED applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信