Xiaoman Zhang, Yehua Zheng, Kun Nie, Xiaodong Zhang, Xiuqiang Duan, Ziyao Hu, Ming Yang, Lefu Mei, Luoxin Wang, Hua Wang, Mingquan Li and Xiaoxue Ma
{"title":"High stability of robust anti-thermal-quenching lead-free double perovskite crystals for optoelectronic devices and high-performance fibers†","authors":"Xiaoman Zhang, Yehua Zheng, Kun Nie, Xiaodong Zhang, Xiuqiang Duan, Ziyao Hu, Ming Yang, Lefu Mei, Luoxin Wang, Hua Wang, Mingquan Li and Xiaoxue Ma","doi":"10.1039/D4TC03773A","DOIUrl":null,"url":null,"abstract":"<p >Lead-free double perovskites are environmentally friendly, and their good photoelectric efficiency has received widespread attention. However, the stability and efficiency of lead-free perovskites need to be further improved to meet the growing application needs. In this study, thermally quenched perovskite (Cs<small><sub>2</sub></small>NaHoCl<small><sub>6</sub></small>) crystals (PCs) were successfully synthesized by co-precipitation. By doping with Sb<small><sup>3+</sup></small>, the excitation wavelength of the original perovskite increased significantly to 250–360 nm, and the emission wavelength of the original perovskite also increased significantly to 660 nm. Cs<small><sub>2</sub></small>NaHoCl<small><sub>6</sub></small>:Sb<small><sup>3+</sup></small> PCs are made of red and white light-emitting diodes (LEDs) for general lighting applications. In addition, Cs<small><sub>2</sub></small>NaHoCl<small><sub>6</sub></small>:Sb<small><sup>3+</sup></small> PCs are made into flexible luminescent fibers with aramid/polyphenylene sulfide (ACFs/PPS) composite fibers. Based on the good thermal quenching resistance of Cs<small><sub>2</sub></small>NaHoCl<small><sub>6</sub></small>:Sb<small><sup>3+</sup></small> PCs, the flexible luminescent fibers showed excellent high-temperature luminescence stability. At 125 °C, flexible luminescent fibers retained 99.8% of the original luminescence intensity; at 250 °C, they retained 75.6% of the original. These flexible luminescent fibers have the potential to be used in fluorescence detection in high-temperature environments. In summary, this study used a simple method to prepare lead-free perovskites with good optical properties and stability, expanding the application of perovskites in the field of fibers.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 1","pages":" 456-464"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03773a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-free double perovskites are environmentally friendly, and their good photoelectric efficiency has received widespread attention. However, the stability and efficiency of lead-free perovskites need to be further improved to meet the growing application needs. In this study, thermally quenched perovskite (Cs2NaHoCl6) crystals (PCs) were successfully synthesized by co-precipitation. By doping with Sb3+, the excitation wavelength of the original perovskite increased significantly to 250–360 nm, and the emission wavelength of the original perovskite also increased significantly to 660 nm. Cs2NaHoCl6:Sb3+ PCs are made of red and white light-emitting diodes (LEDs) for general lighting applications. In addition, Cs2NaHoCl6:Sb3+ PCs are made into flexible luminescent fibers with aramid/polyphenylene sulfide (ACFs/PPS) composite fibers. Based on the good thermal quenching resistance of Cs2NaHoCl6:Sb3+ PCs, the flexible luminescent fibers showed excellent high-temperature luminescence stability. At 125 °C, flexible luminescent fibers retained 99.8% of the original luminescence intensity; at 250 °C, they retained 75.6% of the original. These flexible luminescent fibers have the potential to be used in fluorescence detection in high-temperature environments. In summary, this study used a simple method to prepare lead-free perovskites with good optical properties and stability, expanding the application of perovskites in the field of fibers.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors