Molecular interaction regulation by adding a third component with high miscibility suppresses the energetic disorder and reduces energy loss for efficient ternary solar cells†
IF 5.7 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruiying Lin, Shichu Peng, Zhenyu Luo, Jiaxin Wu, Yaocheng Jin, Yanping Huo, Liangang Xiao and Yonggang Min
{"title":"Molecular interaction regulation by adding a third component with high miscibility suppresses the energetic disorder and reduces energy loss for efficient ternary solar cells†","authors":"Ruiying Lin, Shichu Peng, Zhenyu Luo, Jiaxin Wu, Yaocheng Jin, Yanping Huo, Liangang Xiao and Yonggang Min","doi":"10.1039/D4TC03741C","DOIUrl":null,"url":null,"abstract":"<p >In the advancement of organic solar cells (OSCs), the ternary strategy has emerged as an effective approach for fabricating devices with high photovoltaic performance. In this contribution, we have introduced a novel wide bandgap donor, PBTz-Cl, into the D18:L8-BO binary system to address the excessive aggregation of D18. PBTz-Cl exhibits excellent miscibility with D18 in ternary films due to their similar building blocks. Our findings show that the addition of PBTz-Cl forms a molecular alloy within the amorphous regions of D18. This not only boosts additional exciton generation in D18 through Förster resonance energy transfer, but also suppresses the non-radiative recombination energy loss (Δ<em>E</em><small><sub>3</sub></small>) due to the reduced crystallinity difference between D18 and L8-BO by enhancing the crystallinity of L8-BO. The optimized ternary blend film exhibits superior microstructure morphology and enhanced charge dynamics, leading to enhanced photovoltaic performance and remarkable stability. The resulting OSCs show a remarkable increase in performance with a <em>J</em><small><sub>SC</sub></small> of 25.30 mA cm<small><sup>−2</sup></small>, a <em>V</em><small><sub>OC</sub></small> of 0.911 V, and an FF of 78.33%. Our study highlights the effectiveness of the strategy, which derives from the synergistic effects of compatible polymer donors to precisely regulate molecular packing and optimize film morphology for improved photovoltaic performance.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 1","pages":" 403-413"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03741c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the advancement of organic solar cells (OSCs), the ternary strategy has emerged as an effective approach for fabricating devices with high photovoltaic performance. In this contribution, we have introduced a novel wide bandgap donor, PBTz-Cl, into the D18:L8-BO binary system to address the excessive aggregation of D18. PBTz-Cl exhibits excellent miscibility with D18 in ternary films due to their similar building blocks. Our findings show that the addition of PBTz-Cl forms a molecular alloy within the amorphous regions of D18. This not only boosts additional exciton generation in D18 through Förster resonance energy transfer, but also suppresses the non-radiative recombination energy loss (ΔE3) due to the reduced crystallinity difference between D18 and L8-BO by enhancing the crystallinity of L8-BO. The optimized ternary blend film exhibits superior microstructure morphology and enhanced charge dynamics, leading to enhanced photovoltaic performance and remarkable stability. The resulting OSCs show a remarkable increase in performance with a JSC of 25.30 mA cm−2, a VOC of 0.911 V, and an FF of 78.33%. Our study highlights the effectiveness of the strategy, which derives from the synergistic effects of compatible polymer donors to precisely regulate molecular packing and optimize film morphology for improved photovoltaic performance.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors