Chen Jia, Xiaofang Li, Song Hu, Guohong Liu, Jiansong Fang, Xiaoxia Zhou, Xiliang Yan, Bing Yan
{"title":"Advanced Mass-Spectra-Based Machine Learning for Predicting the Toxicity of Traditional Chinese Medicines","authors":"Chen Jia, Xiaofang Li, Song Hu, Guohong Liu, Jiansong Fang, Xiaoxia Zhou, Xiliang Yan, Bing Yan","doi":"10.1021/acs.analchem.4c05311","DOIUrl":null,"url":null,"abstract":"Traditional Chinese medicine (TCM) has been a cornerstone of health care for centuries, valued for its preventive and therapeutic properties. However, recent decades have revealed significant toxicological concerns associated with TCMs due to their complex chemical compositions. Traditional QSAR (quantitative structure–activity relationships) models, which predict toxicity based on chemical structures, face challenges with the intricate nature of TCM compounds. In this study, we effectively resolved this issue by correlating the toxicity of TCMs with advanced analytical descriptors from electron ionization mass spectra (EI-MS) data. The optimal classification model achieved a balanced accuracy of over 0.74. Through interpretable machine learning models, we identified specific toxic components, such as 13-hexyloxacyclotridec-10-en-2-one and loliolide. We applied molecular dynamics (MD) simulations to explore the interactions of identified toxic components with crucial protein targets, using hepatic cytochrome P450 3A4 as an example. This novel approach not only enhances our understanding of the toxicological profiles of TCMs but also maximizes their therapeutic benefits while minimizing adverse effects. More importantly, our findings support the application of analytical descriptor-based machine learning in predicting the toxicity of unknown mixtures in the real environment.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"114 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional Chinese medicine (TCM) has been a cornerstone of health care for centuries, valued for its preventive and therapeutic properties. However, recent decades have revealed significant toxicological concerns associated with TCMs due to their complex chemical compositions. Traditional QSAR (quantitative structure–activity relationships) models, which predict toxicity based on chemical structures, face challenges with the intricate nature of TCM compounds. In this study, we effectively resolved this issue by correlating the toxicity of TCMs with advanced analytical descriptors from electron ionization mass spectra (EI-MS) data. The optimal classification model achieved a balanced accuracy of over 0.74. Through interpretable machine learning models, we identified specific toxic components, such as 13-hexyloxacyclotridec-10-en-2-one and loliolide. We applied molecular dynamics (MD) simulations to explore the interactions of identified toxic components with crucial protein targets, using hepatic cytochrome P450 3A4 as an example. This novel approach not only enhances our understanding of the toxicological profiles of TCMs but also maximizes their therapeutic benefits while minimizing adverse effects. More importantly, our findings support the application of analytical descriptor-based machine learning in predicting the toxicity of unknown mixtures in the real environment.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.