miR-Cabiner: A Universal microRNA Sensing Platform Based on Self-Stacking Cascaded Bicyclic DNA Circuit-Mediated CRISPR/Cas12a

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Ruijia Deng, Jing Sheng, Zuowei Xie, Hongzhao Yang, Sha Yang, Shuang Xie, Xiaoqi Tang, Shuang Zhao, Haohao Dong, Ming Chen, Kai Chang
{"title":"miR-Cabiner: A Universal microRNA Sensing Platform Based on Self-Stacking Cascaded Bicyclic DNA Circuit-Mediated CRISPR/Cas12a","authors":"Ruijia Deng, Jing Sheng, Zuowei Xie, Hongzhao Yang, Sha Yang, Shuang Xie, Xiaoqi Tang, Shuang Zhao, Haohao Dong, Ming Chen, Kai Chang","doi":"10.1021/acs.analchem.4c05370","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas12a-based diagnostics have great potential for sensing nucleic acids, but their application is limited by the sequence-dependent property. A platform termed miR-Cabiner (a universal <u>miR</u>NA sensing platform based on self-stacking <u>ca</u>scaded <u>bi</u>cyclic D<u>N</u>A circuit-m<u>e</u>diated C<u>R</u>ISPR/Cas12a) is demonstrated herein that is sensitive and universal for analyzing miRNAs. This platform combines catalytic hairpin assembly (CHA) and hybrid chain reaction (HCR) into a unified circuit and finally cascades to CRISPR/Cas12a. Compared with the CHA–Cas12a and HCR–Cas12a systems, miR-Cabiner exhibits a significantly higher reaction rate. Panels of miRNAs (miR-130a, miR-10b, miR-21, and miR-1285), which are associated with diagnosis, staging, and prognosis of breast cancer, are designed to demonstrate the universality of miR-Cabiner. Four miRNAs can be detected to the fM-level by simply tuning the sequence in CHA components. Additionally, miRNA panel analysis also shows high accuracy in practical samples. This universally applicable platform for detecting miRNA may serve as an excellent tool for clinical diagnosis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"19 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05370","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas12a-based diagnostics have great potential for sensing nucleic acids, but their application is limited by the sequence-dependent property. A platform termed miR-Cabiner (a universal miRNA sensing platform based on self-stacking cascaded bicyclic DNA circuit-mediated CRISPR/Cas12a) is demonstrated herein that is sensitive and universal for analyzing miRNAs. This platform combines catalytic hairpin assembly (CHA) and hybrid chain reaction (HCR) into a unified circuit and finally cascades to CRISPR/Cas12a. Compared with the CHA–Cas12a and HCR–Cas12a systems, miR-Cabiner exhibits a significantly higher reaction rate. Panels of miRNAs (miR-130a, miR-10b, miR-21, and miR-1285), which are associated with diagnosis, staging, and prognosis of breast cancer, are designed to demonstrate the universality of miR-Cabiner. Four miRNAs can be detected to the fM-level by simply tuning the sequence in CHA components. Additionally, miRNA panel analysis also shows high accuracy in practical samples. This universally applicable platform for detecting miRNA may serve as an excellent tool for clinical diagnosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信