Rapid Prediction of Phonon Density of States by Crystal Attention Graph Neural Network and High-Throughput Screening of Candidate Substrates for Wide Bandgap Electronic Cooling

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammed Al-fahdi, Changpeng Lin, Chen Shen, Hongbin Zhang, Ming Hu
{"title":"Rapid Prediction of Phonon Density of States by Crystal Attention Graph Neural Network and High-Throughput Screening of Candidate Substrates for Wide Bandgap Electronic Cooling","authors":"Mohammed Al-fahdi, Changpeng Lin, Chen Shen, Hongbin Zhang, Ming Hu","doi":"10.1016/j.mtphys.2024.101632","DOIUrl":null,"url":null,"abstract":"Machine learning has demonstrated superior performance in predicting vast materials properties. However, predicting a spectral-like continuous material property such as phonon density of states (DOS) is more challenging for machine learning. In this work, with phonon DOS of 4,994 inorganic structures with 62 unique elements calculated by density functional theory (DFT), we developed a crystal attention graph neural network (CATGNN) model for predicting total phonon DOS of crystalline materials. The computational cost of training the CATGNN model is several orders of magnitude cheaper than full DFT calculations. We find that high vibrational similarity or phonon DOS overlap is not the only requirement to obtain high interfacial thermal conductance (ITC) instead, the average acoustic group velocity of heat source and heat sink for the acoustic branches in the phonon DOS overlap region is equally important in determining ITC. Pearson correlation analysis yields a few simple material descriptors that are strongly but negatively correlated with ITC. These easy-to-calculate material features combined with the proposed high average acoustic group velocity and phonon DOS overlap predicted by CATGNN model offer a new reliable and fast route for high-throughput screening of novel crystalline materials with desirable high ITC for phonon-mediated thermal management of wide bandgap electronics.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"10 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning has demonstrated superior performance in predicting vast materials properties. However, predicting a spectral-like continuous material property such as phonon density of states (DOS) is more challenging for machine learning. In this work, with phonon DOS of 4,994 inorganic structures with 62 unique elements calculated by density functional theory (DFT), we developed a crystal attention graph neural network (CATGNN) model for predicting total phonon DOS of crystalline materials. The computational cost of training the CATGNN model is several orders of magnitude cheaper than full DFT calculations. We find that high vibrational similarity or phonon DOS overlap is not the only requirement to obtain high interfacial thermal conductance (ITC) instead, the average acoustic group velocity of heat source and heat sink for the acoustic branches in the phonon DOS overlap region is equally important in determining ITC. Pearson correlation analysis yields a few simple material descriptors that are strongly but negatively correlated with ITC. These easy-to-calculate material features combined with the proposed high average acoustic group velocity and phonon DOS overlap predicted by CATGNN model offer a new reliable and fast route for high-throughput screening of novel crystalline materials with desirable high ITC for phonon-mediated thermal management of wide bandgap electronics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信