Raman Spectral Feature Enhancement Framework for Complex Multiclassification Tasks

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jiaqi Hu, Chenlong Xue, Ken Xiaokeng Chi, Junyu Wei, Zhicheng Su, Qiuyue Chen, Ziyu Ou, Shuxin Chen, Zhe Huang, Yilin Xu, Haoyun Wei, Yanjun Liu, Perry Ping Shum, Gina Jinna Chen
{"title":"Raman Spectral Feature Enhancement Framework for Complex Multiclassification Tasks","authors":"Jiaqi Hu, Chenlong Xue, Ken Xiaokeng Chi, Junyu Wei, Zhicheng Su, Qiuyue Chen, Ziyu Ou, Shuxin Chen, Zhe Huang, Yilin Xu, Haoyun Wei, Yanjun Liu, Perry Ping Shum, Gina Jinna Chen","doi":"10.1021/acs.analchem.4c03261","DOIUrl":null,"url":null,"abstract":"Raman spectroscopy enables label-free clinical diagnosis in a single step. However, identifying an individual carrying a specific disease from people with a multi-disease background is challenging. To address this, we developed a Raman spectral implicit feature augmentation with a Raman Intersection, Union, and Subtraction augmentation strategy (RIUS). RIUS expands the data set without requiring additional labeled data by leveraging set operations at the feature level, significantly enhancing model performance across various applications. On a challenging 30-class bacterial classification task, RIUS demonstrated a substantial improvement, increasing the accuracy of ResNet by 2.1% and that of SE-ResNet by 1.4%, achieving accuracies of 85.7% and 87.1%, respectively, on the Bacteria-ID-4 Data set, where RIUS improved ResNet and SE-ResNet accuracies by 13.6% and 14.5%, respectively, with only ten samples per category. When the sample size was reduced, accuracy gains increased to 31.7% and 38.3%, demonstrating the method’s robustness across different sample volumes. Compared to basic augmentation, our method exhibited superior performance across various sample volumes and demonstrated exceptional adaptability to different levels of complexity. RIUS exhibited superior performance, particularly in complex settings. Moreover, cluster analysis validated the effectiveness of the implicit feature augmentation module and the consistency between theoretical design and experimental results. We further validated our approach using clinical serum samples from 70 breast cancer patients and 70 controls, achieving an AUC of 0.94 and a sensitivity of 92.9%. Our approach enhances the potential for precisely identifying diseases in complex settings and offers plug-and-play enhancement for existing classification models.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"55 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy enables label-free clinical diagnosis in a single step. However, identifying an individual carrying a specific disease from people with a multi-disease background is challenging. To address this, we developed a Raman spectral implicit feature augmentation with a Raman Intersection, Union, and Subtraction augmentation strategy (RIUS). RIUS expands the data set without requiring additional labeled data by leveraging set operations at the feature level, significantly enhancing model performance across various applications. On a challenging 30-class bacterial classification task, RIUS demonstrated a substantial improvement, increasing the accuracy of ResNet by 2.1% and that of SE-ResNet by 1.4%, achieving accuracies of 85.7% and 87.1%, respectively, on the Bacteria-ID-4 Data set, where RIUS improved ResNet and SE-ResNet accuracies by 13.6% and 14.5%, respectively, with only ten samples per category. When the sample size was reduced, accuracy gains increased to 31.7% and 38.3%, demonstrating the method’s robustness across different sample volumes. Compared to basic augmentation, our method exhibited superior performance across various sample volumes and demonstrated exceptional adaptability to different levels of complexity. RIUS exhibited superior performance, particularly in complex settings. Moreover, cluster analysis validated the effectiveness of the implicit feature augmentation module and the consistency between theoretical design and experimental results. We further validated our approach using clinical serum samples from 70 breast cancer patients and 70 controls, achieving an AUC of 0.94 and a sensitivity of 92.9%. Our approach enhances the potential for precisely identifying diseases in complex settings and offers plug-and-play enhancement for existing classification models.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信