Polar coordinate-based background removal algorithm for 2D x-ray scattering data.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Pu Guo, Xu Zheng, JiChao Jiang, ShuaiShuai Yin, Chenggong Zhang, Bin Yang, Yitao Cui, Tong Yang, Yueliang Gu, Xiaolong Li, Xingmin Zhang
{"title":"Polar coordinate-based background removal algorithm for 2D x-ray scattering data.","authors":"Pu Guo, Xu Zheng, JiChao Jiang, ShuaiShuai Yin, Chenggong Zhang, Bin Yang, Yitao Cui, Tong Yang, Yueliang Gu, Xiaolong Li, Xingmin Zhang","doi":"10.1063/5.0236066","DOIUrl":null,"url":null,"abstract":"<p><p>During the data collection of x-ray diffraction experiments with various detectors, background signals are often unavoidable along with the sample signal. Addressing the background during post-data analysis is not a straightforward task. In this work, we introduced an algorithm specifically designed to handle centrally symmetric two-dimensional x-ray diffraction data and processed the data using the Python programming language. The two-dimensional data are first transformed from Cartesian coordinates to polar coordinates. Second, utilizing existing background processing algorithms, one-dimensional background curves are identified for each azimuth angle. These background data are then merged to generate two-dimensional background data. Finally, by subtracting the background from the original data, we obtain the clear diffraction signal. The algorithm can effectively remove the background from x-ray diffraction data and exhibits the ability to handle backgrounds with high intensity and irregular shapes, and the discernibility of the weak signal is significantly enhanced. Moreover, researchers have the flexibility to choose whether to preserve or eliminate the signals from additional amorphous components based on their needs. This algorithm will provide researchers with the possibility for further data analysis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0236066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

During the data collection of x-ray diffraction experiments with various detectors, background signals are often unavoidable along with the sample signal. Addressing the background during post-data analysis is not a straightforward task. In this work, we introduced an algorithm specifically designed to handle centrally symmetric two-dimensional x-ray diffraction data and processed the data using the Python programming language. The two-dimensional data are first transformed from Cartesian coordinates to polar coordinates. Second, utilizing existing background processing algorithms, one-dimensional background curves are identified for each azimuth angle. These background data are then merged to generate two-dimensional background data. Finally, by subtracting the background from the original data, we obtain the clear diffraction signal. The algorithm can effectively remove the background from x-ray diffraction data and exhibits the ability to handle backgrounds with high intensity and irregular shapes, and the discernibility of the weak signal is significantly enhanced. Moreover, researchers have the flexibility to choose whether to preserve or eliminate the signals from additional amorphous components based on their needs. This algorithm will provide researchers with the possibility for further data analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信