Pigs as a translational animal model for the study of peak alpha frequency.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Neuroscience Pub Date : 2025-01-26 Epub Date: 2024-12-16 DOI:10.1016/j.neuroscience.2024.12.022
Daniel Skak Mazhari-Jensen, Winnie Jensen, Taha Al Muhammadee Janjua, Suzan Meijs, Thomas Gomes Nørgaard Dos Santos Nielsen, Felipe Rettore Andreis
{"title":"Pigs as a translational animal model for the study of peak alpha frequency.","authors":"Daniel Skak Mazhari-Jensen, Winnie Jensen, Taha Al Muhammadee Janjua, Suzan Meijs, Thomas Gomes Nørgaard Dos Santos Nielsen, Felipe Rettore Andreis","doi":"10.1016/j.neuroscience.2024.12.022","DOIUrl":null,"url":null,"abstract":"<p><p>The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"567-576"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信