{"title":"Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye Disease.","authors":"Zhiwei Zha, Decheng Xiao, Zihao Liu, Fangli Peng, Xunjie Shang, Zhenzhen Sun, Yang Liu, Wei Chen","doi":"10.1167/iovs.65.14.34","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to investigate the potential roles of endoplasmic reticulum (ER) stress in the development of dry eye disease (DED).</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, derived from corneal tissues of a dry eye mouse model, was processed using the Seurat R program. The results were validated using a scopolamine-induced dry eye mouse model and a hyperosmotic-induced cell model involving primary human corneal epithelial cells (HCECs) and immortalized human corneal epithelial (HCE-2) cells. The HCE-2 cells were treated with 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) to modulate ER stress. TXNIP and PERK knockdown were performed by siRNA transfection. Immunofluorescence, Western blotting, and real-time PCR were used to assess oxidative stress, ER stress, unfolded protein response (UPR) marker proteins, and TXNIP/NLRP3 axis activation.</p><p><strong>Results: </strong>The analysis of scRNAseq data shows an increase in the ER stress marker GRP78, and the activation of the PERK-CHOP of UPR in DED mouse. These findings were confirmed both in vivo and in vitro. Additionally, HCE-2 cells treated with 4-PBA or TM showed significant effects on the production of reactive oxygen species (ROS) and the activation of the TXNIP/NLRP3-IL1β signaling pathway. Furthermore, siRNA knockdown of PERK or TXNIP, which alleviated the TXNIP/NLRP3-IL1β signaling axis, showed protective effects on HCECs.</p><p><strong>Conclusions: </strong>This study explores the role of ER stress-induced oxidative stress and NLRP3-IL-1β mediated inflammation in DED, and highlights the therapeutic potential of PERK-CHOP axis and TXNIP in the treatment of DED.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"65 14","pages":"34"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.65.14.34","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to investigate the potential roles of endoplasmic reticulum (ER) stress in the development of dry eye disease (DED).
Methods: Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, derived from corneal tissues of a dry eye mouse model, was processed using the Seurat R program. The results were validated using a scopolamine-induced dry eye mouse model and a hyperosmotic-induced cell model involving primary human corneal epithelial cells (HCECs) and immortalized human corneal epithelial (HCE-2) cells. The HCE-2 cells were treated with 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) to modulate ER stress. TXNIP and PERK knockdown were performed by siRNA transfection. Immunofluorescence, Western blotting, and real-time PCR were used to assess oxidative stress, ER stress, unfolded protein response (UPR) marker proteins, and TXNIP/NLRP3 axis activation.
Results: The analysis of scRNAseq data shows an increase in the ER stress marker GRP78, and the activation of the PERK-CHOP of UPR in DED mouse. These findings were confirmed both in vivo and in vitro. Additionally, HCE-2 cells treated with 4-PBA or TM showed significant effects on the production of reactive oxygen species (ROS) and the activation of the TXNIP/NLRP3-IL1β signaling pathway. Furthermore, siRNA knockdown of PERK or TXNIP, which alleviated the TXNIP/NLRP3-IL1β signaling axis, showed protective effects on HCECs.
Conclusions: This study explores the role of ER stress-induced oxidative stress and NLRP3-IL-1β mediated inflammation in DED, and highlights the therapeutic potential of PERK-CHOP axis and TXNIP in the treatment of DED.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.