In Vitro Bioassay and In silico Pharmacokinetic Characteristics of Xanthium strumarium Plant Extract as Possible Acaricidal Agent.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Nabi Amin, Chia-Hung Wu, Nosheen Malak, Afshan Khan, Shakir Ullah, Imtiaz Ahmad, Muazzam Ali Khan, Muhammad Naveed, Zakir Ullah, Saira Naz, Adil Khan, Chien-Chin Chen
{"title":"In Vitro Bioassay and In silico Pharmacokinetic Characteristics of Xanthium strumarium Plant Extract as Possible Acaricidal Agent.","authors":"Nabi Amin, Chia-Hung Wu, Nosheen Malak, Afshan Khan, Shakir Ullah, Imtiaz Ahmad, Muazzam Ali Khan, Muhammad Naveed, Zakir Ullah, Saira Naz, Adil Khan, Chien-Chin Chen","doi":"10.2174/0113816128317849241108064144","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Effective management strategies against tick infestations are necessary because tickborne diseases represent serious hazards to the health of humans and animals worldwide. The aim of this study was to examine the larvicidal and ovicidal properties of Xanthium strumarium extract against a notorious tick species, Rhipicephalus microplus.</p><p><strong>Methodology: </strong>The maceration method was used to prepare the ethanolic extract of X. strumarium. The extract was then used in an adult immersion test (AIT) and larval packet test (LPT) to asses the plant's toxicity. To elucidate the mode of action, molecular modeling and docking studies were conducted. ADMET analysis was then carried out to find out the drug-likeness profiles of the plant phytochemicals.</p><p><strong>Results: </strong>Significant death rates and egg inhibition were found at different extract doses using the larval packet test (LPT) and adult immersion test (AIT). A concentration-dependent impact was observed at a concentration of 40 mg/mL, which resulted in the maximum larval mortality (92 ± 2.646) and egg inhibition (77.057 ± 2.186). Additionally, the potency of the extract against R. microplus was determined by calculating its fatal concentrations (LC50, LC90, and LC99). A three-dimensional model of the R. microplus octopamine receptor was created, and docking studies showed that the receptor and possible ligands, most notably Xanthatin and Xanthosin, interacted well. The potential of compounds as tick control agents was highlighted by their pharmacokinetic characteristics and toxicity profiles, as revealed by drug-likeness and ADMET studies. Molecular dynamic simulations further demonstrated the stability of the protein-ligand complex, indicating the consistent association between the ligand and the target protein.</p><p><strong>Conclusion: </strong>Overall, this study provides valuable insights into the potential use of X. strumarium extract and its compounds as larvicidal and ovicidal agents against R. microplus, paving the way for further research on tick control strategies.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128317849241108064144","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Effective management strategies against tick infestations are necessary because tickborne diseases represent serious hazards to the health of humans and animals worldwide. The aim of this study was to examine the larvicidal and ovicidal properties of Xanthium strumarium extract against a notorious tick species, Rhipicephalus microplus.

Methodology: The maceration method was used to prepare the ethanolic extract of X. strumarium. The extract was then used in an adult immersion test (AIT) and larval packet test (LPT) to asses the plant's toxicity. To elucidate the mode of action, molecular modeling and docking studies were conducted. ADMET analysis was then carried out to find out the drug-likeness profiles of the plant phytochemicals.

Results: Significant death rates and egg inhibition were found at different extract doses using the larval packet test (LPT) and adult immersion test (AIT). A concentration-dependent impact was observed at a concentration of 40 mg/mL, which resulted in the maximum larval mortality (92 ± 2.646) and egg inhibition (77.057 ± 2.186). Additionally, the potency of the extract against R. microplus was determined by calculating its fatal concentrations (LC50, LC90, and LC99). A three-dimensional model of the R. microplus octopamine receptor was created, and docking studies showed that the receptor and possible ligands, most notably Xanthatin and Xanthosin, interacted well. The potential of compounds as tick control agents was highlighted by their pharmacokinetic characteristics and toxicity profiles, as revealed by drug-likeness and ADMET studies. Molecular dynamic simulations further demonstrated the stability of the protein-ligand complex, indicating the consistent association between the ligand and the target protein.

Conclusion: Overall, this study provides valuable insights into the potential use of X. strumarium extract and its compounds as larvicidal and ovicidal agents against R. microplus, paving the way for further research on tick control strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信