TRIM22 mechanism promoting KAT2A ubiquitination degradation to regulate ferroptosis in hepatocellular carcinoma cell invasion and metastasis.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Xiaoshan Chen, Wei Wang, Wei Wei
{"title":"TRIM22 mechanism promoting KAT2A ubiquitination degradation to regulate ferroptosis in hepatocellular carcinoma cell invasion and metastasis.","authors":"Xiaoshan Chen, Wei Wang, Wei Wei","doi":"10.14670/HH-18-856","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Hepatocellular carcinoma (HCC) is a highly fatal cancer. This study aims to investigate the underlying mechanism of tripartite motif-containing 22 (TRIM22) in HCC cell invasion and metastasis through the K (lysine) acetyltransferase 2A (KAT2A)/glutathione peroxidase 4 (GPX4) axis.</p><p><strong>Methods: </strong>Human HCC cells BEL7405 were cultured <i>in vitro</i> and treated with MG-132, Ferrostain-1, pcDNA3.1-TRIM22, pcDNA3.1-KAT2A, or pcDNA3.1-NC. TRIM22-KAT2A interaction and KAT2A ubiquitination level, cell proliferation, invasion, migration, and histone H3 lysine 9 acetylation (H3K9ac) enrichment level on the GPX4 promoter were assessed by Co-IP, CCK-8, Transwell, and ChIP-qPCR assays. Mice were injected subcutaneously with Lv-oe-NC or Lv-oe-TRIM22 BEL7405 cells via the tail vein. Tumor proliferation and levels of TRIM22, KAT2A, GPX4, Fe<sup>2+</sup>, malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) in tissues and cells were evaluated by immunohistochemistry, RT-qPCR, western blot, and kits.</p><p><strong>Results: </strong>oe-TRIM22-treated BEL7405 cells exhibited increased TRIM22 expression, and abated KAT2A protein expression and malignant cell biological behaviors, which were partially reversed by upregulating KAT2A or suppressing ferroptosis. TRIM22 interacted with KAT2A, which was ubiquitinated to regulate GPX4 histone acetylation. TRIM22 overexpression elevated Fe<sup>2+</sup>, MDA, and ROS levels and cell death, and diminished GSH, GPX4, and H3K9ac enrichment levels, whereas further overexpression of KAT2A brought about opposite trends. TRIM22 suppressed HCC growth and metastasis by mediating ferroptosis through the KAT2A/GPX4 axis.</p><p><strong>Conclusions: </strong>TRIM22 promoted KAT2A ubiquitination degradation to reduce H3K9ac enrichment levels in the GPX4 promoter region, and facilitated ferroptosis, thereby inhibiting HCC cell invasion and metastasis and <i>in vivo</i> growth and metastasis.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18856"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-856","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Hepatocellular carcinoma (HCC) is a highly fatal cancer. This study aims to investigate the underlying mechanism of tripartite motif-containing 22 (TRIM22) in HCC cell invasion and metastasis through the K (lysine) acetyltransferase 2A (KAT2A)/glutathione peroxidase 4 (GPX4) axis.

Methods: Human HCC cells BEL7405 were cultured in vitro and treated with MG-132, Ferrostain-1, pcDNA3.1-TRIM22, pcDNA3.1-KAT2A, or pcDNA3.1-NC. TRIM22-KAT2A interaction and KAT2A ubiquitination level, cell proliferation, invasion, migration, and histone H3 lysine 9 acetylation (H3K9ac) enrichment level on the GPX4 promoter were assessed by Co-IP, CCK-8, Transwell, and ChIP-qPCR assays. Mice were injected subcutaneously with Lv-oe-NC or Lv-oe-TRIM22 BEL7405 cells via the tail vein. Tumor proliferation and levels of TRIM22, KAT2A, GPX4, Fe2+, malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) in tissues and cells were evaluated by immunohistochemistry, RT-qPCR, western blot, and kits.

Results: oe-TRIM22-treated BEL7405 cells exhibited increased TRIM22 expression, and abated KAT2A protein expression and malignant cell biological behaviors, which were partially reversed by upregulating KAT2A or suppressing ferroptosis. TRIM22 interacted with KAT2A, which was ubiquitinated to regulate GPX4 histone acetylation. TRIM22 overexpression elevated Fe2+, MDA, and ROS levels and cell death, and diminished GSH, GPX4, and H3K9ac enrichment levels, whereas further overexpression of KAT2A brought about opposite trends. TRIM22 suppressed HCC growth and metastasis by mediating ferroptosis through the KAT2A/GPX4 axis.

Conclusions: TRIM22 promoted KAT2A ubiquitination degradation to reduce H3K9ac enrichment levels in the GPX4 promoter region, and facilitated ferroptosis, thereby inhibiting HCC cell invasion and metastasis and in vivo growth and metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Histology and histopathology
Histology and histopathology 生物-病理学
CiteScore
3.90
自引率
0.00%
发文量
232
审稿时长
2 months
期刊介绍: HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信